Concepto e historia de la microbiologíA




descargar 114.32 Kb.
títuloConcepto e historia de la microbiologíA
página2/3
fecha de publicación30.01.2016
tamaño114.32 Kb.
tipoDocumentos
b.se-todo.com > Biología > Documentos
1   2   3

2.4 EL DEBATE SOBRE LOS FERMENTOS

Un segundo factor contribuyente al nacimiento de la ciencia microbiológica fue el establecimiento de la relación que une ciertas transformaciones químicas que se dan en las infusiones con el crecimiento de los gérmenes en ellas existentes. Cagniard-Latour en 1836, y Schwann y Kützing en 1837 habían sugerido que las levaduras eran las causantes de la fermentación alcohólica por la que el azúcar pasa a alcohol etílico y dióxido de carbono, pero se encontraron con la crítica adversa de los grandes químicos de la época (Berzelius, Wohler y Liebig). Liebig, hacia 1840, había realizado importantes confirmaciones a la "teoría mineral" sobre la nutrición de las plantas, enfrentándose a la "teoría del humus" sostenida por Thaer, asestando un golpe a las ideas vitalistas heredadas de Leibniz. Puesto que se consideraba a las levaduras como plantas microscópicas, se suponía que los procesos de fermentación y putrefacción se debían a fenómenos químicos de descomposición y muerte encuadrables en el marco de la teoría mineral de la fisiología vegetal. Su convencimiento de que toda actividad vital se podía explicar en términos de química y física retrasó por algún tiempo la adscripción de estos fenómenos a células vivas.

Fue Pasteur (que, desde sus primeros estudios sobre las propiedades ópticas de los cristales de tartrato, venía suponiendo que estos compuestos tenían un orígen orgánico) quien de nuevo intervino en el debate de forma decisiva. En 1857 demostró que los agentes de la fermentación láctica eran microorganismos, trabajando sobre un problema que había surgido entre los destiladores de Lille cuando en sus cubas la fermentación alcohólica se vio sustituida por una indeseable fermentación láctica. Este fue el inicio de una larga serie de estudios que habría de durar hasta 1876, en los que Pasteur identificó distintos microorganismos responsables de diferentes clases de procesos fermentativos. Así, en 1860 adscribe inequívocamente la fermentación alcohólica a ciertos tipos de levaduras, y en 1866, en sus Études sur le vin resume sus hallazgos al respecto, inaugurando la Microbiología Aplicada, una de las primeras derivaciones prácticas no empíricas emanadas de la Biología. A finales del siglo XIX eminentes biólogos como Hansen, en Copenhague, y Beijerink, en Delft, desarrollaban su actividad en industrias y destilerías.

Trabajando sobre los agentes de la fermentación butírica, Pasteur descubrió la presencia de microorganismos que se desarrollaban en ausencia de oxígeno, lo cual desmentía la creencia de que todas las formas de vida necesitan aire para crecer. Acuñó los términos aerobiosis y anaerobiosis para denominar, respectivamente, a la vida en presencia y en ausencia de oxígeno.

Tras el descubrimiento de la anaerobiosis, el mismo Pasteur comprendió las distintas implicaciones energéticas subyacentes a la utilización de sustratos orgánicos en presencia y en ausencia de oxígeno, demostrando que, en el segundo caso el rendimiento (medido como crecimiento microbiano) era siempre menor, al no poder realizarse la degradación total de las correspondientes sustancias.

Una profundización en los fenómenos de fermentación llegó cuando en 1897 Buchner obtuvo, a partir de levaduras, una preparación enzimática (zimasa) que era capaz de realizar la misma transformación de "fermentación" que las células vivas. Este descubrimiento, que evocaba las propuestas de Berzelius y Liebig, supuso en realidad la confluencia de los enfoques químico y biológico: las fermentaciones eran procesos químicos catalizados por enzimas presentes dentro de células vivas, que podían ser estudiados extracelularmente. De esta forma, la Bioquímica, nacida como una rama de la química fisiológica, que se venía especializando en la enzimología, encontró una alianza fructífera y duradera con la joven Microbiología.

 

2.5 LOS AVANCES TÉCNICOS

La doctrina del pleomorfismo, vigente durante buena parte del siglo XIX, mantenía que los microorganismos adoptaban formas y funciones cambiantes dependiendo de las condiciones ambientales. A estas ideas se oponían frontalmente investigadores como Koch, Pasteur y Cohn, que estaban convencidos de la especificidad y constancia morfológica y fisiológica de cada tipo de microorganismo (monomorfismo). El pleomorfismo había surgido como una explicación a la gran variedad de formas y actividades que aparecían en un simple frasco de infusión, pero ya Pasteur, en sus estudios sobre la fermentación, se había percatado de que los cultivos que aparecían podían considerarse como una sucesión de distintas poblaciones de microorganismos predominantes, que, a resultas de sus actividades, condicionaban la ulterior composición de la comunidad microbiana. La solución definitiva a esta cuestión dependía, de nuevo, de un desarrollo técnico, que a su vez iba a suministrar una de las herramientas características de la nueva ciencia: los métodos de cultivo puro.

Los primeros cultivos puros fueron obtenidos por el micólogo Brefeld, quien logró aislar esporas de hongos y cultivarlas sobre medios sólidos a base de gelatina. Por su menor tamaño, este método se hacía inviable para las bacterias, por lo que se recurrió a un método basado en diluciones: Lister, en 1878 realizó diluciones secuenciales de cultivos mixtos, hasta lograr muestras en las que existía una sola célula. Pero la técnica era larga y tediosa y, además, normalmente sólo se lograban aislar células del tipo bacteriano más abundante en el cultivo original; sin embargo, el experimento sirvió para confirmar la naturaleza "particulada" de los agentes de las fermentaciones.

Por aquella época Koch buscaba con ahínco métodos más sencillos de cultivo puro, indispensables para proseguir sus investigaciones sobre bacterias patógenas. Primero (y quizá de forma un tanto casual) empleó rodajas de patata como sustrato sólido nutritivo sobre el que se podían desarrollar colonias macroscópicas de bacterias que presentaban morfología característica, que Koch interpretó como resultantes del crecimiento a partir de células individuales. Pero enseguida recurrió a compactar el típico caldo de cultivo a partir de carne (diseñado por Loeffler) añadiéndole gelatina (1881). El medio sólido así logrado era transparente, lo que permitía visualizar fácilmente los rasgos coloniales, y contenía los nutrientes adecuados para el crecimiento de una amplia gama de bacterias. Éstas eran inoculadas en la superficie del medio con un hilo de platino pasado previamente por la llama, por la técnica de siembra en estría. Sin embargo, la gelatina presentaba los inconvenientes de ser atacada por determinados microorganismos, y de tener un bajo punto de fusión; ambos problemas se solventaron cuando en 1882 el médico alemán Walter Hesse, siguiendo una sugerencia de su mujer Fanny, introdujo el agar-agar (polisacárido extraído de algas rojas) como nuevo agente solidificante. El trabajo de Koch ya citado tuvo la trascendental consecuencia de derribar las ideas pleomorfistas, y supuso la primera propuesta del concepto de especie dentro del mundo bacteriano. En 1887 Petri, un ayudante de Koch, sustituyó las engorrosas bandejas de vidrio cubiertas con campanas, usadas hasta entonces para los cultivos sólidos, por un sistema manejable de placas de cristal planas, que se conoce como cajas de Petri.

El desarrollo de los medios selectivos y de enriquecimiento fue una consecuencia de las investigaciones llevadas a cabo por Beijerinck y Winogradsky entre 1888 y los primeros años del siglo XX, sobre bacterias implicadas en procesos biogeoquímicos y poseedoras de características fisiológicas distintivas (quimioautótrofas, fijadoras de nitrógeno, etc.). Estos medios, donde se aplica a pequeña escala el principio de selección natural, se diseñan de forma que su composición química definida favorezca sólo el crecimiento de ciertos tipos fisiológicos de microorganismos, únicos capaces de usar ciertos nutrientes del medio.

Otra importante aportación a este "período de cultivo" dentro del desarrollo de la Microbiología surgió del uso de medios diferenciales, en los que se manifiesta algún rasgo bioquímico o metabólico, lo que contribuye a la identificación microbiana. Fue Würtz quien, en 1892, introdujo el uso de indicadores de pH, incorporados en los medios, lo cual permitía revelar la producción de acidificaciones por fermentación en ciertas bacterias.

Mientras tanto, en la ciudad de Jena se había creado una atmósfera de progreso donde confluían grandes naturalistas como Haeckel, Strassburger o Abbé interaccionando con una pujante editorial especializada en Biología y Medicina (Gustav Fischer) y con una poderosa industria óptica y química. Estas influencias recíprocas se plasmaron en numerosos proyectos que reflejaban la efervescencia de las ciencias naturales tras la estela de Darwin (cfr. Jahn et al., 1985). Concretamente, la industria óptica de Abbé y Zeiss, que se mantenía en conexión con la compañía vidriera Schott, pudo satisfacer la necesidad de Koch de perfeccionar el microscopio compuesto, introduciendo lentes acromáticas y una iluminación inferior provista de condensador. El mismo Abbé desarrolló en 1878 el objetivo de inmersión en aceite. Por otro lado, la industria química BASF, que por aquella época se encontraba en pleno auge de patentes de nuevos colorantes, sumistró al laboratorio de Koch una serie de derivados de anilina que teñían las bacterias permitiendo su fácil visualización al microscopio en frotis de tejidos infectados. En 1875 Carl Weigert tiñó bacterias con pirocarmín, un colorante que ya venía siendo usado desde hacía unos años en estudios zoológicos. En años sucesivos se fueron introduciendo el azul de metileno (Koch, 1877), la fuchsina, y el violeta cristal. En 1882-1883 Ziehl y Neelsen desarrollan su método de ácido-alcohol resistencia para teñir Mycobacterium tuberculosis. En 1884 el patólogo danés Christian Gram establece una tinción de contraste que permite distinguir dos tipos bacterianos en función de sus reacción diferencial de tinción y que, como se vería mucho más tarde, reflejaba la existencia de dos grupos de bacterias con rasgos estructurales distintivos. En 1890 Loeffler logra visualizar flagelos bacterianos por medio de su técnica de impregnación argéntica. Como veremos más adelante, la misma industria de colorantes alemana previa a la primera guerra mundial fue decisiva también para los comienzos de la quimioterapia.

Estas innovaciones técnicas (métodos de cultivo, microscopía y tinciones) fueron fundamentales (junto con los sistemas de esterilización abordados en el anterior apartado) para la consolidación de la Microbiología como ciencia, permitiendo eliminar las grandes dosis de especulación que hasta entonces habían predominado.

 

2.6 EL PAPEL DE LOS MICROORGANISMOS EN LAS ENFERMEDADES.

Durante el siglo XIX la atención de muchos naturalistas se había dirigido hacia las diversas formas de animales y plantas que vivían como parásitos de otros organismos. Este interés se redobló tras la publicación de los libros de Darwin, estudiándose las numerosas adaptaciones evolutivas que los distintos parásitos habían adquirido en su peculiar estilo de vida. Sin embargo, la adjudicación de propiedades de parásitos a los microorganismos vino del campo médico y veterinario, al revalorizarse las ideas sobre el origen germinal de las enfermedades infecciosas.

En 1835 Agostino Bassi (1773-1856) demostró que cierta enfermedad del gusano de seda (mal di segno), que había hecho su aparición en Lombardía, se debía a un hongo (Botrytis bassiana). Cuatro años más tarde J.L. Schönlein descubrió la asociación de un hongo con una enfermedad humana de la piel. En 1840 Henle, de la escuela fisiológica de Johannes Müller, planteó la teoría de que las enfermedades infecciosas están causadas por seres vivos invisibles, pero de nuevo la confirmación de estas ideas tuvo que esperar a que la intervención de Pasteur demostrara la existencia de microorganismos específicos responsables de enfermedades.

Hacia mediados del siglo XIX otra enfermedad infecciosa (pebrina) comenzó a diseminarse por los criaderos de gusano de seda de toda Europa, alcanzando finalmente a China y Japón. A instancias de su maestro Jean Baptiste Dumas, Pasteur aceptó el reto de viajar a la Provenza para investigar esta enfermedad que estaba dejando en la ruina a los industriales sederos, a pesar de que nunca hasta entonces se había enfrentado con un problema de patología. Es más que probable que Pasteur viera aquí la oportunidad de confirmar si sus estudios previos sobre las fermentaciones podían tener una extensión hacia los procesos fisiológicos del hombre y de los animales. Es sorprendente que, al principio no se mostrara dispuesto a aceptar la idea de que la pebrina fuera una enfermedad ocasionada por un agente extraño, creyendo durante los dos primeros años que se trataba de alteraciones meramente fisiológicas. Tras una serie de tanteos, y en medio de una intensa actividad intelectual que le obligaba a repasar continuamente los experimentos y las conclusiones extraídas, inmerso en el drama personal de la muerte de su padre y de dos de sus hijas en un corto lapso de tiempo, Pasteur llega finalmente, en 1869, a identificar al protozoo Nosema bombycis como el responsable de la epidemia, y por medio de una serie de medidas de control, ésta comienza a remitir de modo espectacular.

La intervención de bacterias como agentes específicos en la producción de enfermedades fue descubierta a raíz de una serie de investigaciones sobre el carbunco o ántrax, enfermedad que afecta a ganado y que puede transmitirse al hombre. C. Davaine, entre 1863 y 1868, encontró que en la sangre de vacas afectadas aparecían grandes cantidades de microorganismos a los que llamó bacteridios; además, logró inducir la enfermedad experimentalmente en vacas sanas, inoculándoles muestras de sangre infectada. En 1872 el médico alemán C.J. Eberth consiguió aislar los bacilos filtrando sangre de animales carbuncosos. Pero fue Robert Koch (1843-1910), que había sido alumno de Henle, quien con su reciente técnica de cultivo puro logró, en 1876, el primer aislamiento y propagación in vitro del bacilo del ántrax (Bacillus anthracis), consiguiendo las primeras microfotografías sobre preparaciones secas, fijadas y teñidas con azul de metileno. Más tarde (1881), Koch y sus colaboradores confirmaron que las esporas son formas diferenciadas a partir de los bacilos, y más resistentes que éstos a una variedad de agentes. Pero más fundamental fue su demostración de que la enfermedad se podía transmitir sucesivamente a ratones sanos inoculándoles bacilos en cultivo puro, obtenidos tras varias transferencias en medios líquidos.

Este tipo de estrategias para demostrar el origen bacteriano de una enfermedad fue llevado a una ulterior perfección en 1882, con la publicación de "Die Äthiologie der Tuberkulose", donde se comunica por primera vez la aplicación de los criterios que Henle había postulado en 1840. Estos criterios, que hoy van asociados al nombre de Koch, son los siguientes:

  1. El microorganismo debe de estar presente en todos los individuos enfermos.

  2. El microorganismo debe poder aislarse del hospedador y ser crecido en cultivo puro.

  3. La inoculación del microorganismo crecido en cultivo puro a animales sanos debe provocar la aparición de síntomas específicos de la enfermedad en cuestión.

  4. El microorganismo debe poder ser reaislado del hospedador infectado de forma experimental.

Fue asimismo Koch quien demostró el principio de especificidad biológica del agente infeccioso: cada enfermedad infecciosa específica está causada por un tipo de bacteria diferente. Estos trabajos de Koch abren definitivamente el campo de la Microbiología Médica sobre firmes bases científicas.

Durante las dos décadas siguientes la Microbiología experimentó una auténtica edad de oro, en la que se aislaron y caracterizaron muchas bacterias patógenas. La Alemania del Reich, que a la sazón se había convertido en una potencia política y militar, se decidió a apoyar la continuidad de los trabajos del equipo de Koch, dada su enorme importancia social y económica, creando un Instituto de investigación, siendo Koch su director en el Departamento de Salud. De esta forma, en la Escuela Alemana se aislaron los agentes productores del cólera asiático (Koch, 1883), de la difteria (Loeffler, 1884), del tétanos (Nicolaier, 1885 y Kitasato, 1889), de la neumonía (Fraenkel, 1886), de la meningitis (Weichselbaun, 1887), de la peste (Yersin, 1894), de la sífilis (Schaudinn y Hoffman, 1905), etc. Igualmente se pudieron desentrañar los ciclos infectivos de agentes de enfermedades tropicales no bacterianas que la potencia colonial se encontró en ultramar: malaria (Schaudinn, 1901-1903), enfermedad del sueño (Koch, 1906), peste vacuna africana (debida al inglés Bruce, 1895-1897), etc.

Por otro lado, la Escuela Francesa, nucleada en el Instituto Pasteur, se concentró en los estudios sobre los procesos infectivos, la inmunidad del hospedador, y la obtención de vacunas, sobre todo a raíz de la vacuna antirrábica ensayada por Pasteur (1885), contribuyendo al nacimiento de la Inmunología

 

2.7 DESARROLLO DE LA ASEPSIA, QUIMIOTERAPIA Y ANTIBIOTERAPIA

Los avances de las técnicas quirúrgicas hacia mediados del siglo XIX, impulsados por la introducción de la anestesia, trajeron consigo una gran incidencia de complicaciones post-operatorias derivadas de infecciones. Un joven médico británico, Joseph Lister (1827-1912), que había leído atentamente los trabajos de Pasteur, y que creía que estas infecciones se debían a gérmenes presentes en el aire, comprobó que la aplicación de compuestos como el fenol o el bicloruro de mercurio en el lavado del instrumental quirúrgico, de las manos y de las heridas, disminuía notablemente la frecuencia de infecciones post-quirúrgicas y puerperales.

Más tarde, Paul Ehrlich (1854-1919), que había venido empleando distintas sustancias para teñir células y microorganismos, y que conocía bien el efecto de tinción selectiva de bacterias por ciertos colorantes que dejaban, en cambio, incoloras a células animales, concibió la posibilidad de que algunos de los compuestos de síntesis que la industria química estaba produciendo pudieran actuar como "balas mágicas" que fueran tóxicas para las bacterias pero inocuas para el hospedador. Ehrlich concibió un programa racional de síntesis de sustancias nuevas seguido de ensayo de éstas en infecciones experimentales. Trabajando en el laboratorio de Koch, probó sistemáticamente derivados del atoxilo (un compuesto que ya Thompson, en 1905, había mostrado como eficaz contra la tripanosomiasis), y en 1909 informó de que el compuesto 606 (salvarsán) era efectivo contra la sífilis. Aunque el salvarsán presentaba algunos efectos colaterales, fue durante mucho tiempo el único agente disponible contra enfermedades producidas por espiroquetas, y sirvió para ilustrar brillantemente la validez del enfoque de la llamada quimioterapia (término acuñado por el mismo Ehrlich), de modo que encauzó toda la investigación posterior.

En 1927 Gerhard Domagk, en conexión con la poderosa compañía química I.G. Farbenindustrie, inició un ambicioso proyecto de búsqueda de nuevos agentes quimioterápicos, siguiendo el esquema de Ehrlich; en 1932-1935 descubre la acción del rojo de prontosilo frente a neumococos hemolíticos dentro del hospedador, pero señala que esta droga es inactiva sobre bacterias creciendo in vitro. La explicación la sumistra el matrimonio Tréfouël, del Instituto Pasteur, al descubrir que la actividad antibacteriana depende de la conversión por el hospedador en sulfanilamida. El mecanismo de acción de las sulfamidas (inhibición competitiva con el ácido para-aminobenzoico) fue dilucidado por el estadounidense Donald D. Woods. Las investigaciones de éste encaminaron a la industria farmacéutica hacia la síntesis de análogos de metabolitos esenciales, introduciendo un enfoque más racional frente a la época anterior, más empírica.

En 1874, el médico inglés W. Roberts había descrito las propiedades antibióticas de ciertos cultivos de hongos (Penicillium glaucum) contra las bacterias, e introdujo en Microbiología el concepto de antagonismo. Otros investigadores de finales del siglo XIX realizaron observaciones similares, pero fue Fleming quien, en 1929, logró expresar ideas claras sobre el tema, al atribuir a una sustancia química concreta (la penicilina) la acción inhibidora sobre bacterias producida por el hongo Penicillium notatum. Fleming desarrolló un ensayo crudo para determinar la potencia de la sustancia en sus filtrados, pudiendo seguir su producción a lo largo del tiempo de cultivo, y mostrando que no todas las especies bacterianas eran igualmente sensibles a la penicilina. Las dificultades técnicas para su extracción, junto al hecho de que el interés de la época aún estaba centrado sobre las sulfamidas, impidieron una pronta purificación de la penicilina, que no llegó hasta los trabajos de Chain y Florey (1940), comprobándose entonces su gran efectividad contra infecciones bacterianas, sobre todo de Gram-positivas, y la ausencia de efectos tóxicos para el hospedador.

Inmediatamente comenzó una búsqueda sistemática de microorganismos del suelo que mostraran actividades antibióticas. En 1944 A. Schatz y S. Waksman descubren la estreptomicina, producida por Streptomyces griseus, siendo el primer ejemplo de antibiótico de amplio espectro. Los diez años que siquieron al término de la segundad guerra mundial vieron la descripción de 96 antibióticos distintos producidos por 57 especies de microorganismos, principalmente Actinomicetos.

En la década de los 60 se abrió una nueva fase en la era de los antibióticos al obtenerse compuestos semisintéticos por modificación química de antibióticos naturales, paliándose los problemas de resistencia bacteriana a drogas que habían empezado a aparecer, disminuyéndose en muchos casos los efectos secundarios, y ampliándose el espectro de acción.

Aparte de la revolución que supusieron en el campo de la aplicación clínica, los antibióticos ha permitido notables avances en el desentrañamiento de determinados aspectos de arquitectura y función moleculares de las células susceptibles (paredes celulares microbianas, ribosomas, síntesis proteica, etc.).

 2.8 AUGE DE LA MICROBIOLOGÍA GENERAL.

Gran parte de los avances en Microbiología descritos hasta ahora se debieron a la necesidad de resolver problemas prácticos. Pero hacia finales del siglo XIX una serie de investigadores -algunos de ellos procedentes de áreas más clásicas de la Historia Natural- desarrollaron importantes estudios básicos que fueron revelando una enorme variedad de microorganismos y sus actividades metabólicas, así como su papel crucial en ciclos biogeoquímicos, sus relaciones con procesos de nutrición vegetal, etc.

El descubrimiento de la quimioautotrofía, obra del gran microbiólogo ruso Sergei Winogradsky (1856-1953), obligó a revisar los conceptos previos, procedentes de la Fisiología Vegetal, de que el crecimiento autotrófico dependía de la presencia de clorofila. Winogradsky había comenzado investigando las bacterias del hierro descubiertas por Cohn en 1875, observando que podían crecer en medios minerales, por lo que supuso que obtenían su energía de la oxidación de sales ferrosas a férricas (1888). En 1889, combinando técnicas de observación secuencial de cultivos microscópicos con ensayos microquímicos sobre bacterias del azufre (Beggiatoa, Thiothrix), infirió que estos microorganismos oxidaban sulfuro de hidrógeno hasta azufre elemental (acumulando éste como gránulos), y luego hasta ácido sulfúrico, obteniendo de este modo su energía. Estas observaciones pueden haber sido el arranque del concepto de litotrofía. Pero el descubrimiento de la quimioautotrofía llegó cuando al año siguiente Winogradsky y Omeliansky pasaron a estudiar las bacterias nitrificantes, demostrando de manera clara que la energía obtenida de la oxidación del amonio o del nitrito era usada para fijar CO2 (1889-1890). Más tarde el mismo Winogradsky extendió la demostración a cultivos puros en los que el agente solidificante de los medios era el gel de sílice. La explicación del proceso de oxidación de los compuestos de azufre no llegó hasta los estudios de Dangeard (1911) y Kiel (1912). Nuevas capacidades metabólicas fueron reveladas al estudiar los procesos respiratorios de las bacterias que oxidan hidrógeno o metano (Söhngen, 1906).

El químico Berthelot había señalado (1885) que los microorganismos del suelo podían incorporar nitrógeno molecular directamente del aire. Fue igualmente Winogradsky el primero en aislar una bacteria capaz de fijar nitrógeno atmosférico (Clostridium pasteurianum) y en explicar el ciclo del nitrógeno en la naturaleza (1890), siendo el holandés Martinus Beijerinck (1851-1931) el descubridor de Azotobacter como bacteria aerobia fijadora de vida libre (1901). Más tarde Beijerinck demostró por métodos químicos que, en efecto, Azotobacter incorpora nitrógeno de la atmósfera mientras crece (1908). La importancia de la fijación de nitrógeno para la nutrición vegetal llegó con los estudios sobre bacterias formadoras de nódulos en las raíces de las leguminosas. Ya los experimentos cuantitativos sobre plantas creciendo en recipientes, realizados por Boussingault a mediados del siglo XIX, habían indicado que las leguminosas asimilaban nitrógeno de la atmósfera. En 1866 Voronin descubrió las bacterias de los nódulos radicales de esta familia de plantas. Frank, en 1879, demostró que los nódulos parecían inducirse por las mismas bacterias albergadas en ellos, y Ward (1887) usó bacterias procedentes de nódulos machacados para inocular semillas, logrando la producción de nódulos en suelo estéril, y describiendo en un bello trabajo el proceso de infección, con su producción de "hifas" (cordón de infección). Tras la introducción del concepto de simbiosis por De Bary, en 1878, fue Schindler (1884) el primero en describir los nódulos radicales como resultado de una simbiosis entre planta y bacterias. Los trabajos de Hermann Hellriegel (1831-1895) y de su colaborador Hermann Willfahrt (1853-1904), que trabajaban en la Estación Experimental de Bernburg, comunicados en primer lugar en un cogreso en Berlín, en 1886, y publicados en un artículo ejemplar en 1888, asociaron la fertilidad nitrogenada natural de las leguminosas con la presencia de sus nódulos radicales, señalando que estos nódulos se inducían por microorganismos específicos; de este modo lograron una brillante síntesis de las observaciones microbiológicas y químicas. El mismo año de 1888 Beijerinck logró el cultivo puro in vitro de las bacterias nodulares (a las que bautizó como Bacillus radicicola), observando que no reducían nitrógeno en vida libre; más tarde (1890) aportó la prueba definitiva de que las bacterias aisladas eran capaces de nodular específicamente ciertas especies de leguminosas, adquiriéndose de esta forma la facultad de fijar nitrógeno en su asociación con la raíz de la planta. Irónicamente el nombre definitivo para las bacterias de los nódulos de leguminosas (Rhizobium) fue propuesto por Frank, quien durante mucho tiempo se había negado a reconocer los resultados de Hellriegel y Willfahrt, y que había oscilado en sus opiniones, desde suponer que la fijación de nitrógeno era un rasgo general de las plantas, hasta creer que las estructuras nodulares observadas a microcopio (bacteroides) eran gránulos de reserva (incluidas las que él mismo observó en plantas no leguminosas de los géneros Alnus y Eleagnus, originadas por una bacteria bautizada en su honor -Frankia); incluso cuando se convenció de que los simbiontes eran bacterias (y no hongos o mixomicetes), pensaba que éstas sólo estimulaban a que las plantas fijaran nitrógeno en sus hojas; su "conversión" (y aún así incompleta y con reticencias) no llegó hasta 1892. El aislamiento de los bacteroides intranodulares (Prazmowski, 1890), y la relación entre su formación y la fijación de nitrógeno (Nobbe y Hiltner, 1893) completó esta primera oleada de investigación sobre este tema que tanta trascendencia presentaba para la Agronomía. Estos estudios están en la base de todos los ulteriores trabajos de Microbiología Agrícola, de modo que esta especiliadad fue incorporada tempranamente a los laboratorios científicos y estaciones experimentales.

Las obras trascendentales de Winogradsky y Beijerinck abrieron un nuevo horizonte para el estudio de la diversidad microbiana. La escuela de Beijerinck, en la Universidad Técnica de Delft, fue continuada por por A.J. Kluyver y C.B. van Niel, siendo este último el "padre" de la escuela norteamericana desde su establecimiento en California, ya que formó a figuras tan importantes como R.Y. Stanier, R.E. Hungate o M. Doudoroff. La escuela holandesa fundada por Beijerinck tuvo asimismo otra fructífera "colonia" en la ciudad alemana de Konstanz, donde N. Pfennig continuó el trabajo emprendido junto a van Niel en Delft. Todos estos autores, y sus colaboradores, fueron realizando contribuciones esenciales sobre una amplia diversidad de bacterias, descubriendo la variedad de las bacterias fotosintéticas, los tipos de organismos litotróficos, y profundizando en multitud de aspectos estructurales y fisiológicos de las bacterias recién descubiertas. Como dice T.D. Brock en una recensión de Kluyver (1961) "los hombres de la escuela de Delft de Microbiología General fueron pioneros en una época en la que la mayoría de los investigadores estaban demasiado fascinados por problemas aplicados en medicina, agricultura o industria, como para preocuparse por microorganismos quimiosintéticos o fotosintéticos, o por aquellos que muestran fermentaciones inusuales...". Pero, como en tantas otras ocasiones, este enfoque de ciencia básica ha sido extraordinariamente fértil, y aparte de la profundización en la unidad y diversidad de la vida ha dado origen a penetrantes percepciones en multitud de problemas planteados, tarde o temprano, a las ciencias biológicas.

2.9 DESARROLLO DE LA INMUNOLOGÍA

La inmunología es, en la actualidad, una ciencia autónoma y madura, pero sus orígenes han estado estrechamente ligados a la Microbiología. Su objeto consiste en el estudio de las respuestas de defensa que han desarrollado los animales frente a la invasión por microorganismos o partículas extraños, aunque su interés se ha volcado especialmente sobre aquellos mecanismos altamente evolucionados e integrados, dotados de especificidad y de memoria, frente a agentes reconocidos por el cuerpo como no-propios, así como de su neutralización y degradación.

Como tantas otras ciencias, la Inmumología presenta un prolongado período pre-científico, de observaciones y aproximaciones meramente empíricas. La resistencia a ulteriores ataques de una enfermedad infecciosa fue ya recogida en escritos de la antigüedad; el historiador griego Tucídides (464-404 a.C.) narra que en una epidemia acaecida durante la guerra del Peloponeso, los enfermos eran atendidos solo por aquellos que habían sobrevivido previamente a la enfermedad, en la seguridad de que éstos no volverían a ser contagiados. Igualmente, en la antigua China se había observado que las personas que en su niñez habían padecido la viruela no la adquirían más adelante en su vida. Los mismos chinos, en el siglo XI a. C., fueron los primeros en intentar una aplicación de estas observaciones que indicaban la inducción de un estado protector por medio de una forma suave de la enfermedad: la inhalación de polvo de escaras de viruela provocaba un ataque suave que confería resistencia ante infecciones posteriores. Una modificación fue introducida en Occidente en el siglo XVIII por Pylarini y Timoni, y fue popularizada en Gran Bretaña por Lady Mary Wortley Montagu, esposa del embajador inglés en Constantinopla, tras una serie inicicial de pruebas sobre "voluntarios" (prisioneros). Sin embargo, este tipo de prácticas no llegaron a arraigar ampliamente, ya que no estaban exentas de riesgos, entre los cuales figuraba la posibilidad de transmisión de otras enfermedades.

El primer acercamiento a la inmunización con criterios racionales fue realizado por el médico inglés Edward Jenner (1749-1823), tras su constatación de que los vaqueros que habían adquirido la viruela vacunal (una forma benigna de enfermedad que sólo producía pústulas en las manos) no eran atacados por la grave y deformante viruela humana. En mayo de 1796 inoculó a un niño fluido procedente de las pústulas vacunales de Sarah Nelmes; semanas después el niño fue inyectado con pus de una pústula de un enfermo de viruela, comprobando que no quedaba afectado por la enfermedad. Jenner publicó sus resultados en 1798 ("An enquiry into the causes and effects of the variolae vaccinae..."), pronosticando que la aplicación de su método podría llegar a erradicar la viruela. Jenner fue el primero en recalcar la importancia de realizar estudios clínicos de seguimiento de los pacientes inmunizados, consciente de la necesidad de contar con controles fiables.

La falta de conocimiento, en aquella época, de las bases microbiológicas de las enfermedades infecciosas retrasó en casi un siglo la continuación de los estudios de Jenner, aunque ciertos autores, como Turenne, en su libro "La syphilization" (1878) lograron articular propuestas teóricas de cierto interés.

El primer abordaje plenamente científico de problemas inmunológicos se debió, de nuevo, a Pasteur. Estudiando la bacteria responsable del cólera aviar (más tarde conocida como Pasteurella aviseptica), observó (1880) que la inoculación en gallinas de cultivos viejos, poco virulentos, las protegía de contraer la enfermedad cuando posteriormente eran inyectadas con cultivos normales virulentos. De esta forma se obtuvo la primera vacuna a base de microorganismos atenuados. Fue precisamente Pasteur quien dio carta de naturaleza al término vacuna, en honor del trabajo pionero de Jenner. En los años siguientes Pasteur abordó la inmunización artificial para otras enfermedades; concretamente, estableció de forma clara que cultivos de Bacillus anthracis atenuados por incubación a 45?C conferían inmunidad a ovejas expuestas a contagio por carbunco. Una famosa demostración pública de la bondad del método de Pasteur tuvo lugar en Pouilly le Fort, el dos de junio de 1881, cuando ante un gentío expectante se pudo comprobar la muerte del grupo control de ovejas y vacas no inoculadas, frente a la supervivencia de los animales vacunados. Años después, abordaría la inmunización contra la rabia, enfermedad de la que se desconocía el agente causal. Pasteur observó que éste perdía virulencia cuando se mantenían al aire durante cierto tiempo extractos medulares de animales infectados, por lo que dichos extractos se podían emplear eficazmente como vacunas. Realizó la primera vacunación antirrábica en humanos el 6 de julio de 1885, sobre el niño Joseph Meister, que había sido mordido gravemente por un perro rabioso. A este caso siguieron otros muchos, lo que valió a Pasteur reconocimiento universal y supuso el apoyo definitivo a su método de inmunización, que abría perspectivas prometedoras de profilaxis ante muchas enfermedades. Estos logros determinaron, en buena medida, la creación del Instituto Pasteur, que muy pronto reunió a un selecto grupo de científicos, que enfocarían sus esfuerzos en diversos aspectos de las inmunizaciones y de sus bases biológicas. A su vez, los norteamericanos Salmon y Smith (1886) perfeccionaron los métodos serológicos de Pasteur, lo que les permitió producir y conservar más fácilmente sueros tipificados contra la peste porcina.

A finales del siglo XIX existían dos teorías opuestas sobre los fundamentos biológicos de las respuestas inmunes. Por un lado, el zoólogo ruso Ilya Ilich Mechnikov (1845-1916), que había realizado observaciones sobre la fagocitosis en estrellas de mar y pulgas de agua, estableció, a partir de 1883, su "Teoría de los fagocitos", tras estudiar fenómenos de englobamiento de partículas extrañas por los leucocitos de conejo y de humanos. Informó que existían fenómenos de eliminación de agentes patógenos por medio de "células devoradoras" (fagocitos) que actuaban en animales vacunados contra el carbunco, y explicó la inmunización como una "habituación" del hospedador a la fagocitosis. Más tarde, ya integrado en el Instituto Pasteur, propugnó la idea de que los fagocitos segregan enzimas específicos, análogos a los "fermentos" digestivos (1900). Esta teoría de los fagocitos constituyó el núcleo de la teoría de la inmunidad celular, de modo que la fagocitosis se consideraba como la base principal del sistema de defensa inmune del organismo.

Por otro lado, la escuela alemana de Koch hacía hincapié en la importancia de los mecanisnos humorales. Emil von Behring (1854-1917) y Shibasaburo Kitasato (1856-1931), a resultas de sus trabajos sobre las toxinas del tétanos y de la difteria, observaron que el cuerpo produce "antitoxinas" (más tarde conocidas como anticuerpos) que tendían a neutralizar las toxinas de forma específica, y evidenciaron que el suero que contiene antitoxinas es capaz de proteger a animales expuestos a una dosis letal de la toxina correspondiente (1890). La intervención de Ehrlich permitió obtener sueros de caballo con niveles de anticuerpos suficientemente altos como para conferir una protección eficaz, e igualmente se pudo disponer de un ensayo para cuantificar la "antitoxina" presente en suero. Ehrlich dirigió desde 1896 el Instituto Estatal para la Investigación y Comprobación de Sueros, en Steglitz, cerca de Berlín, y, a partir de 1899, estuvo al frente del mejor equipado Instituto de Terapia Experimental, en Frankfurt. Durante este último periodo de su vida, Ehrlich produce una impresionante obra científica, en la que va ahondando en la comprensión de la inmunidad humoral. En 1900 da a luz su "Teoría de las cadenas laterales", en la que formula una explicación de la formación y especificidad de los anticuerpos, estableciendo una base química para la interacción de éstos con los antígenos. Por su lado, R. Kraus visualiza por primera vez, en 1897, una reacción antígeno-anticuerpo, al observar el enturbiamento de un filtrado bacteriano al mezclarlo con un suero inmune específico (antisuero). En 1898 Jules Bordet (1870-1961) descubre otro componente sérico relacionado con la respuesta inmunitaria, al que bautiza como "alexina", caracterizado, frente al anticuerpo, por su termolabilidad e inespecificidad. (Más tarde se impondría el nombre de complemento, propuesto por Ehrlich). El mismo Bordet desarrolló, en 1901, el primer sistema diagnóstico para la detección de anticuerpos, basado en la fijación del complemento, y que inició una larga andadura, que llega a nuestros días.

La conciliación de las dos teorías se debió a Almorth Wrigth y Stewart R. Douglas, quienes en 1904 descubren las opsoninas, anticuerpos presentes en los sueros de animales inmunizados y que, tras unirse a la superficie bacteriana, incrementan la capacidad fagocítica de los leucocitos.

El área de la inmunopatología inicia su andadura con la descripción del fenómeno de anafilaxia producido por introducción en un animal de un suero de una especie distinta (Portier y Richet, 1902; Arthus, 1903), lo que a su vez abriría la posibilidad de métodos de serodiagnóstico, con aplicaciones múltiples en Medicina, Zoología, y otras ciencias biológicas. En 1905 Pirquet sugiere que la enfermedad del suero (un fenómemo de hipersensibilidad) tiene relación directa con la producción de anticuerpos contra el suero inyectado, introduciendo el término de alergia para referirse a la reactividad inmunológica alterada.

La inmunoquímica cobra un gran impulso en las primeras décadas del siglo XX con los trabajos de Karl Landsteiner (1868-1943). Su primera contribución de importancia había sido la descripción, mediante reacciones de aglutinación, del sistema de antígenos naturales (ABC0) de los eritrocitos humanos (1901-1902), completada (en colaboración con Von Dungern y Hirzfeld), con las subdivisiones del grupo A y el estudio de su transmsión hereditaria. Estos trabajos sirvieron de estímulo para avanzar en el desentrañamiento de la especificidad química de los antígenos que determinan la formación de anticuerpos. Landsteiner estudió sistemáticamente las características de inmunogenicidad y especificidad de reacción de antígenos con anticuerpos, valiéndose de la modificación química de antígenos, denominando haptenos a aquellos grupos químicos que por sí mismos no desencadenan formación de anticuerpos, pero sí lo hacen tras ser conjugados a proteínas portadoras.

La cuestión de las reacciones antígeno-anticuerpo se convirtió en otra polémica entre escuelas hasta finales de los años 20. Mientras Ehrlich y sus seguidores mantenían que estas reacciones tienen una base puramente química, Bordet y sus discípulos las explicaban como fenómenos físicos de reacciones entre coloides. La resolución del debate debió aguardar hasta finales de los años 30, al incorporarse avances técnicos como la electroforesis, la cromatografía en papel, la ultracentrifugación y el microscopio electrónico. Heidelberg y Kendall (1936) purificaron anticuerpos a partir de sueros por disociación de precipitados. Tiselius (1939) demostró que los anticuerpos constituyen la fracción gamma-globulínica del suero. Veinte años después R.R. Porter y G.M. Edelman establecen la estructura de las inmunoglobulinas. Durante este lapso de tiempo se descubre que la síntesis de anticuerpos ocurre en las células plasmáticas, aunque éstas no son puestas en relación aún con los linfocitos; durante muchos años se siguió creyendo que los linfocitos eran células pasivas, sin función inmune. Por aquella época se describe, también, la diversidad de inmunoglobulinas, llegándose al establecimiento de una nomenclatura. Enseguida comienza la era de los múltiples experimentos sobre timectomía en ratones neonatos y sobre bursectomía en aves, así como los de reconstitución de animales irradiados, con timocitos y células de la medula ósea, y que permiten afirmar el papel esencial de los linfocitos, encuadrarlos en tipos funcionales T y B, y relacionarlos con las respuestas inmunes celular y humoral, respectivamente.

Una importante faceta de la inmunología de la primera mitad del siglo XX fue la obtención de vacunas. Se lograron toxoides inmunogénicos a partir de toxinas bacterianas, en muchos casos por tratamiento con formol: toxoide tetánico (Eisler y Lowenstein, 1915) y toxoide diftérico (Glenny, 1921). En 1922 se desarrolla la vacuna BCG contra la tuberculosis, haciendo uso de una cepa atenuada de Mycobacterium tuberculosis, el bacilo de Calmette-Guérin. La utilización de coadyuvantes se inicia en 1916, por LeMoignic y Piroy.

La inmunogenética nace cuando Bernstein describe en 1921 el modelo de transmisión hereditaria de los cuatro grupos sanguíneos principales, basándose en el análisis estadístico de sus proporciones relativas, y con el descubrimiento por Landsteiner y Levène (1927) de los nuevos sistemas MN y P. Los experimentos de transfusiones sanguíneas interespecíficas permitieron distinguir la gran complejidad de los antígenos sanguíneos, explicables según unos 300 alelos múltiples.

Una contribución esencial a las ideas sobre el mecanismo de formación de los anticuerpos la realizó el australiano Macfarlane Burnet (1899-1985), al establecer su teoría de la selección clonal; ésta argumenta que cada linfocito B sintetiza un único tipo de anticuerpo, específico para cada antígeno (determinante antigénico), de modo que la unión del antígeno causa la proliferación clonal del linfocito B, con la consecuente síntesis incrementada de anticuerpos específicos. Igualmente, Burnet lanzó una hipótesis sobre el mecanismo subyacente a la auto-tolerancia inmunológica, que fue confirmada experimentalmente por Peter Medawar. Más recientemente Niels Jerne ha realizado nuevas aportaciones y refinamientos a la teoría de la selección clonal, proponiendo un modelo de regulación inmune conocido como teoría de las redes idiotípicas.

Los avances en Inmunología durante los últimos años han sido espectaculares, consolidando a ésta como ciencia independiente, con su conjunto propio de paradigmas, ya relativamente escindida de su tronco originario microbiológico. Entre los hitos recientes hay que citar la técnica de producción de anticuerpos monoclonales a partir de hibridomas, desarrollada originalmente por César Milstein y Georges Kohler en 1975, y que presenta una enorme gama de aplicaciones en biomedicina, o el desentrañamiento de los fenómenos de reorganización genética responsables de la expresión de los genes de inmunoglobulinas, por Susumu Tonegawa.

 
1   2   3

similar:

Concepto e historia de la microbiologíA iconTema Introducción histórica a la Microbiología Concepto de Microbiología

Concepto e historia de la microbiologíA iconConcepto de microbiología industrial

Concepto e historia de la microbiologíA iconTema 23 microorganismos: concepto y diversidad. Evolución histórica de la microbiologíA

Concepto e historia de la microbiologíA iconDepto. Microbiologia tercer año tema: inmunologia introducción e historia

Concepto e historia de la microbiologíA iconConcepto y Objetivos de la Historia de la Educación

Concepto e historia de la microbiologíA iconEje temático 1: La historia del concepto de salud – enfermedad

Concepto e historia de la microbiologíA iconResumen. Historia y evolución del concepto de desarrollo sustentable

Concepto e historia de la microbiologíA iconEl concepto de inteligencia ha sufrido variaciones en función de...

Concepto e historia de la microbiologíA iconResumen inicia el artículo una reflexión en torno al concepto de...

Concepto e historia de la microbiologíA iconConcepto de medicina preventiva. Conocimiento de la realidad sanitaria concepto de salud




Todos los derechos reservados. Copyright © 2019
contactos
b.se-todo.com