2011 Unidad 1: Evolución del Mantenimiento




descargar 0.49 Mb.
título2011 Unidad 1: Evolución del Mantenimiento
página11/12
fecha de publicación01.02.2016
tamaño0.49 Mb.
tipoDocumentos
b.se-todo.com > Documentos > Documentos
1   ...   4   5   6   7   8   9   10   11   12

Pilar 4: Educación y Formación

Este pilar considera todas las acciones que se deben realizar para el desarrollo de habilidades para lograr altos niveles de desempeño de las personas en su trabajo. Se puede desarrollar en pasos como todos los pilares TPM y emplea técnicas utilizadas en mantenimiento autónomo, mejoras enfocadas y herramientas de calidad.

Pilar 5: Mantenimiento Temprano

Este pilar busca mejorar la tecnología de los equipos de producción. Es fundamental para empresas que compiten en sectores de innovación acelerada, Mass Customization o manufactura versátil, ya que en estos sistemas de producción la actualización continua de los equipos, la capacidad de flexibilidad y funcionamiento libre de fallos, son factores extremadamente críticos. Este pilar actúa durante la planificación y construcción de los equipos de producción. Para su desarrollo se emplean métodos de gestión de información sobre el funcionamiento de los equipos actuales, acciones de dirección económica de proyectos, técnicas de ingeniería de calidad y mantenimiento. Este pilar es desarrollado a través de equipos para proyectos específicos. Participan los departamentos de investigación, desarrollo y diseño, tecnología de procesos, producción, mantenimiento, planificación, gestión de calidad y áreas comerciales.

Pilar 6: Mantenimiento de Calidad (Hinshitsu Hozen)

Tiene como propósito establecer las condiciones del equipo en un punto donde el "cero defectos" es factible. Las acciones del mantenimiento de calidad buscan verificar y medir las condiciones "cero defectos" regularmente, con el objeto de facilitar la operación de los equipos en la situación donde no se generen defectos de calidad.

Mantenimiento de Calidad no es...

  • Aplicar técnicas de control de calidad  a las tareas de mantenimiento

  • Aplicar un sistema ISO a la función de mantenimiento

  • Utilizar técnicas de control estadístico de calidad al mantenimiento

  • Aplicar acciones de mejora continua a la función de mantenimiento

Mantenimiento de Calidad es...

  • Realizar acciones de mantenimiento orientadas al cuidado del equipo para que este no genere defectos de calidad

  • Prevenir defectos de calidad certificando que la maquinaria cumple las condiciones para "cero defectos" y que estas se encuentra dentro de los estándares técnicos

  • Observar las variaciones de las características de los equipos para prevenir defectos y tomar acciones adelantándose a la situación de anormalidad potencial

  • Realizar estudios de ingeniería del equipo para identificar los elementos del equipo que tienen una alta incidencia en las características de calidad del producto final, realizar el control de estos elementos de la máquina e intervenir estos elementos

Principios del Mantenimiento de Calidad

Los principios en que se fundamenta el Mantenimiento de Calidad son:

  1. Clasificación de los defectos e identificación de las circunstancias en que se presentan, frecuencia y efectos.

  2. Realizar un análisis físico para identificar los factores del equipo que generan los defectos de calidad

  3. Establecer valores estándar para las características de los factores del equipo y valorar los resultados a través de un proceso de medición

  4. Establecer un sistema de inspección periódico de las características críticas

  5. Preparar matrices de mantenimiento y valorar periódicamente los estándares

Pilar 7: Mantenimiento en Áreas Administrativas

Este pilar tiene como propósito reducir las pérdidas que se pueden producir en el trabajo manual de las oficinas. Si cerca del 80 % del costo de un producto es determinado en las etapas de diseño del producto y de desarrollo del sistema de producción. El mantenimiento productivo en áreas administrativas ayuda a evitar pérdidas de información, coordinación, precisión de la información, etc. Emplea técnicas de mejora enfocada, estrategia de 5’s, acciones de mantenimiento autónomo, educación y formación y estandarización de trabajos. Es desarrollado en las áreas administrativas con acciones individuales o en equipo.

Pilar 8: Gestión de Seguridad, Salud y Medio Ambiente

Tiene como propósito crear un sistema de gestión integral de seguridad. Emplea metodologías desarrolladas para los pilares mejoras enfocadas y mantenimiento autónomo. Contribuye significativamente a prevenir riesgos que podrían afectar la integridad de las personas y efectos negativos al medio ambiente.

Pilar 9: Especiales (Monotsukuri)

Este pilar tiene como propósito mejorar la flexibilidad de la planta, implantar tecnología de aplazamiento, nivelar flujo, aplicar Justo a Tiempo y otras tecnologías de mejora de los procesos de manufactura.

Pasos para la implantación de TPM

Paso 1: Comunicar el compromiso de la alta gerencia para introducir el TPM

Se debe hacer una declaración del ejecutivo de más alto rango en la cual exprese que se tomo la resolución de implantar TPM en la empresa

Paso 2: Campaña educacional introductoria para el TPM

Para esto se requiere de la impartición de varios cursos de TPM en los diversos niveles de la empresa

Paso 3: Establecimiento de una organización promocional y un modelo de mantenimiento de máquinas mediante una organización formal

Esta organización debe estar formada por:

  • Gerentes de la planta

  • Gerentes de departamento y sección

  • Supervisores

  • Personal

Paso 4: Fijar políticas básicas y objetivos

Las metas deben ser por escrito en documentos que mencionen que el TPM será implantado como un medio para alcanzar las metas.

Primero se debe decidir sobre el año en el que la empresa se someterá a auditoria interna o externa

Fijar una meta numérica que debe ser alcanzada para cada categoría en ese año

No se deben fijar metas “tibias”, las metas deben ser drásticas reducciones de 1/100 bajo los objetivos planteados

Paso 5: Diseñar el plan maestro de TPM

La mejor forma es de una manera lenta y permanente

Se tiene que planear desde la implantación hasta alcanzar la certificación (Premio a la excelencia de TPM)

Paso 6: Lanzamiento introductorio

Involucra personalmente a las personas de nivel alto y medio, quienes trabajan en establecer los ajustes para el lanzamiento, ya que este día es cuando será lanzado TPM con la participación de todo el personal.

Un programa tentativo sería:

  1. Declaración de la empresa en la que ha resuelto implantar el TPM

  2. Anunciar a las organizaciones promociónales del TPM, las metas fundamentales y el plan maestro

  3. El líder sindical realiza una fuerte declaración de iniciar las actividades del TPM

  4. Los invitados ofrecen un discurso de felicitación

  5. Se reconoce mediante elogios el trabajo desarrollado para la creación de logotipos, frases y cualquier otra actividad relacionada con este tema

Paso 7: Mejoramiento de la efectividad del equipo

En este paso se eliminaran las 6 grandes pérdidas consideradas por el TPM como son:

1. Pérdidas por fallas:

Son causadas por defectos en los equipos que requieren de alguna clase de reparación. Estas pérdidas consisten de tiempos muertos y los costos de las partes y mano de obra requerida para la reparación. La magnitud de la falla se mide por el tiempo muerto causado.

2. Pérdidas de cambio de modelo y de ajuste:

Son causadas por cambios en las condiciones de operación, como el empezar una corrida de producción, el empezar un nuevo turno de trabajadores. Estas pérdidas consisten de tiempo muerto, cambio de moldes o herramientas, calentamiento y ajustes de las máquinas. Su magnitud también se mide por el tiempo muerto.

3. Pérdidas debido a paros menores:

Son causadas por interrupciones a las máquinas, atoramientos o tiempo de espera. En general no se pueden registrar estas pérdidas directamente, por lo que se utiliza el porcentaje de utilización (100% menos el porcentaje de utilización), en este tipo de pérdida no se daña el equipo.

4. Pérdidas de velocidad:

Son causadas por reducción de la velocidad de operación, debido que a velocidades más altas, ocurren defectos de calidad y paros menores frecuentemente.

5. Pérdidas de defectos de calidad y retrabajos:

Son productos que están fuera de las especificaciones o defectuosos, producidos durante operaciones normales, estos productos, tienen que ser retrabajados o eliminados. Las pérdidas consisten en el trabajo requerido para componer el defecto o el costo del material desperdiciado.

6. Pérdidas de rendimiento:

Son causadas por materiales desperdiciados o sin utilizar y son ejemplificadas por la cantidad de materiales regresados, tirados o de desecho.

Concepto de productividad total efectiva de los equipos (PTEE)

La PTEE es una medida de la productividad real de los equipos. Esta medida se obtiene multiplicando los siguientes indicadores:

PTEE = AE X OEE

AE-Aprovechamiento del equipo

Se trata de una medida que indica la cantidad del tiempo calendario utilizado por los equipos. El AE está más relacionado con decisiones directivas sobre uso del tiempo calendario disponible que con el funcionamiento en sí del equipo. Esta medida es sensible al tiempo que habría podido funcionar el equipo, pero por diversos motivos los equipos no se programaron para producir el 100 % del tiempo. Otro factor que afecta el aprovechamiento del equipo es el tiempo utilizado para realizar acciones planeadas de mantenimiento preventivo. El AE se puede interpretar como un porcentaje del tiempo calendario que ha utilizado un equipo para producir.

Para calcular el AE se pueden aplicar los pasos que se detallan a continuación.

  1. Establecer el tiempo base de cálculo o tiempo calendario (TC).

Es frecuente en empresas de manufactura tomar la base de cálculo 1440 minutos o 24 horas. Para empresas de procesos continuos que realizan inspección de planta anual, consideran el tiempo calendario como (365 días * 24 horas).

  1. Obtener el tiempo total no programado

Si una empresa trabaja únicamente dos turnos (16 horas), el tiempo de funcionamiento no programado en un mes será de 240 horas.

  1. Obtener el tiempo de paros planeados

Se suma el tiempo utilizado para realizar acciones preventivas de mantenimiento, descansos, reuniones programadas con operarios, reuniones de mejora continua, etc.

Calcular el tiempo de funcionamiento (TF)

Es el total de tiempo que se espera que el equipo o planta opere. Se obtiene restando del TC, el tiempo destinado a mantenimiento planificado y tiempo total no programado.

TF= Tiempo calendario – (Tiempo total no programado + Tiempo de paros planeados)

AE = (TF/TC) X 100

Y representa el porcentaje del tiempo calendario que realmente se utiliza para producir y se expresa en porcentaje.

OEE-Efectividad Global del Equipo (Overall Equipment Effectiveness)

Esta medida evalúa el rendimiento del equipo mientras está en funcionamiento. La OEE está fuertemente relacionada con el estado de conservación y productividad del equipo mientras está funcionando.

Este indicador muestra las pérdidas reales de los equipos medidas en tiempo. Este indicador posiblemente es el más importante para conocer el grado de competitividad de una planta industrial. Cabe recalcar que estos indicadores se manejan de forma diaria, por lo que los datos de paros planeados y los paros no programados varían con los utilizados en el AE y está compuesto por los siguientes tres factores:

  1. Disponibilidad: Mide las pérdidas de disponibilidad de los equipos debido a

paros no programados.

Disponibilidad =

En donde:

Tiempo neto disponible = Tiempo extra + Tiempo total programado +Tiempo de paro permitido

Tiempo operativo = Tiempo neto disponible – Tiempo de paros de línea

  1. Eficiencia: Mide las pérdidas por rendimiento causadas por el mal funcionamiento del equipo, no funcionamiento a la velocidad y rendimiento origina determinada por el fabricante del equipo o diseño.

Eficiencia =

En donde:

Tiempo tacto =

  1. Calidad a la primera (FTT): Estas pérdidas por calidad representan el tiempo utilizado para producir productos que son defectuosos o tienen problemas de calidad. Este tiempo se pierde, ya que el producto se debe destruir o re-procesar. Si todos los productos son perfectos, no se producen estas pérdidas de tiempo del funcionamiento del equipo.


FTT =

En donde:

Total de partes defectivas: Piezas defectuosas + retrabajos o recuperaciones

El cálculo de la OEE se obtiene multiplicando los anteriores tres términos expresados en porcentaje.

OEE = Disponibilidad X Eficiencia X FTT

¿Por qué es importante la OEE?

Este indicador responde elásticamente a las acciones realizadas tanto de mantenimiento autónomo, como de otros pilares TPM. Una buena medida inicial de OEE ayuda a identificar las áreas críticas donde se podría iniciar una experiencia piloto TPM. Sirve para justificar a la alta dirección sobre la necesidad de ofrecer el apoyo de recursos necesarios para el proyecto y para controlar el grado de contribución de las mejoras logradas en la planta.

Las cifras que componen la OEE nos ayudan a orientar el tipo de acciones TPM y la clase de instrumentos que debemos utilizar para el estudio de los problemas y fenómenos. La OEE sirve para construir índices comparativos entre plantas (benchmarking) para equipos similares o diferentes. En aquellas líneas de producción complejas puede se debe calcular la OEE para los equipos componentes. Esta información será útil para definir en el tipo de equipo en el que hay que incidir con mayor prioridad con acciones TPM. Algunos directivos de plantas consideran que obtener un valor global OEE para una proceso complejo o una planta no es útil del todo, ya que puede combinar múltiples causas que cambian diariamente y el efecto de las acciones TPM no se logran apreciar adecuadamente en la OEE global. Por este motivo, es mejor obtener un valor de OEE por equipo, con especial atención en aquellos que han sido seleccionados como piloto o modelo.

Es frecuente que la información se encuentre fragmentada en los diferentes departamentos de la empresa y no se calcule el AE y OEE. Esto conduce a que cada departamento cuide sus índices. Sin embargo, el efecto multiplicativo de la disponibilidad, rendimiento y niveles de calidad producen un deterioro del AE y OEE, no siendo observado por los directivos de la empresa.

Es frecuente que el personal de mantenimiento se encargue de controlar la disponibilidad de los equipos ya que este mide la eficiencia general del departamento. La disponibilidad es una medida de funcionamiento del equipo. Sin embargo, en el área de mantenimiento es frecuente desconocer los valores del nivel de rendimiento de estos equipos. Si se llega a deteriorar este nivel, se cuestiona la causa y frecuentemente se asume como causa aquellos problemas que operativos y que nada tienen que ver con la función de mantenimiento. Esta falta de trabajo en equipo y con intereses comunes, hace que sea más difícil obtener las verdaderas fuentes de pérdida. Por este motivo, si en una empresa existe comportamientos frecuentes como "yo reparo el equipo y tú lo operas", va a ser imposible mejorar la OEE de una planta.

Paso 8: Establecimiento de un programa de mantenimiento de mantenimiento autónomo para los operadores

El mantenimiento autónomo requiere que los operadores entiendan o conozcan su equipo, por lo que se requiere de 3 habilidades:

  1. Un claro entendimiento del criterio para juzgar condiciones normales y anormales

  2. Un estricto esfuerzo para mantener las condiciones del equipo

  3. Una rápida respuesta a las anormalidades ( habilidad para reparar y restaurar las condiciones del equipo)



Paso 9: Preparación de un calendario para el programa de mantenimiento

El propósito del programa es mejorar las funciones de: conservación, prevención, predicción, corrección y mejoramiento tecnológico

Paso 10: Dirigir el entrenamiento para mejorar la operación y las habilidades del mantenimiento. El entrenamiento consisten en los siguientes temas:

  • Técnicas de diagnóstico en general

  • Técnicas de diagnóstico para equipo básico

  • Teoría de vibración

  • Reglas de inspección general

  • Lubricación

Paso 11: Desarrollo de un programa inicial para la administración del equipo

El cual tendrá como objetivos:

  • Garantizar al 100% la calidad del producto

  • Garantizar el costo previsto inicial y de operación

  • Garantizar operatividad y eficiencia planeada del equipo

Paso 12: Implantar completamente y apoyar los objetivos

Empleando las siguientes fases de implantación:

  1. Planeación y reparación de la implantación de TPM

  2. Instalación piloto

  3. Instalación a toda la planta


Producción Nivelada (Heijunka)

Heijunka, o Producción Nivelada es una técnica que adapta la producción a la demanda fluctuante del cliente. La palabra japonesa Heijunka (pronunciado eh el kah del junio), significa literalmente "haga llano y nivelado". La demanda del cliente debe cumplirse con la entrega requerida del cliente, pero la demanda del cliente es fluctuante, mientras las fábricas prefieren que ésta esté “nivelada" o estable. Un fabricante necesita nivelar estas demandas de la producción.

La herramienta principal para la producción suavizadora es el cambio frecuente de la mezcla ejemplar para ser corrido en una línea dada. En lugar de ejecutar lotes grandes de un modelo después de otro, se debe producir lotes pequeños de muchos modelos en periodo cortos de tiempo. Esto requiere tiempos de cambio más rápidos, con pequeños lotes de piezas buenas entregadas con mayor frecuencia.
Verificación de proceso (Jidoka)

La palabra "Jidoka" significa verificación en el proceso, cuando en el proceso de producción se instalan sistemas Jidoka se refiere a la verificación de calidad integrada al proceso.

La filosofía Jidoka establece los parámetros óptimos de calidad en el proceso de producción, el sistema Jidoka compara los parámetros del proceso de producción contra los estándares establecidos y hace la comparación, si los parámetros del proceso no corresponden a los estándares preestablecidos el proceso se detiene, alertando que existe una situación inestable en el proceso de producción la cual debe ser corregida, esto con el fin de evitar la producción masiva de partes o productos defectuosos, los procesos Jidoka son sistemas comparativos de lo "ideal" o "estándar" contra los resultados actuales en producción. Existen diferentes tipos de sistemas Jidoka: visión, fuerza, longitud, peso, volumen, etc. depende del producto es el tipo o diseño del sistema Jidoka que se debe implantar, como todo sistema, la información que se alimenta como "ideal" o "estándar debe ser el punto óptimo de calidad del producto.

Jidoka puede referirse a equipo que se detiene automáticamente bajo las condiciones anormales. Jidoka también se usa cuando un miembro del equipo encuentra un problema en su estación de trabajo. Los miembros del equipo son responsables para corregir el problema - si ellos no pueden, ellos pueden detener la línea -. El objetivo de Jidoka puede resumirse como:

  • Calidad asegurando 100% del tiempo

  • Averías de equipo previniendo

  • Mano de obra usando eficazmente


Dispositivos para prevenir errores (Poka Yoke)

El término " Poka Yoke " viene de las palabras japonesas "poka" ( error inadvertido) y "yoke" (prevenir). Un dispositivo Poka Yoke es cualquier mecanismo que ayuda a prevenir los errores antes de que sucedan, o los hace que sean muy obvios para que el trabajador se dé cuenta y lo corrija a tiempo. La finalidad del Poka Yoke es eliminar los defectos en un producto ya sea previniendo o corrigiendo los errores que se presenten lo antes posible.

Los sistemas Poka Yoke implican el llevar a cabo el 100% de inspección, así como, retroalimentación y acción inmediata cuando los defectos o errores ocurren. Este enfoque resuelve los problemas de la vieja creencia que el 100% de la inspección toma mucho tiempo y trabajo, por lo que tiene un costo muy alto.

Un sistema Poka Yoke posee dos funciones: una es la de hacer la inspección del 100% de las partes producidas, y la segunda es si ocurren anormalidades puede dar retoalimentación y acción correctiva. Los efectos del método Poka Yoke en reducir defectos va a depender en el tipo de inspección que se este llevando a cabo, ya sea: en el inicio de la línea, auto-chequeo, o chequeo continuo.

Funciones reguladoras Poka Yoke

Métodos de Control

Existen métodos que cuando ocurren anormalidades apagan las máquinas o bloquean los sistemas de operación previniendo que siga ocurriendo el mismo defecto. Estos tipos de métodos tienen una función reguladora mucho más fuerte, que los de tipo preventivo, y por lo tanto este tipo de sistemas de control ayudan a maximizar la eficiencia para alcanzar cero defectos.

No en todos los casos que se utilizan métodos de control es necesario apagar la máquina completamente, por ejemplo cuando son defectos aislados (no en serie) que se pueden corregir después, no es necesario apagar la maquinaria completamente, se puede diseñar un mecanismo que permita "marcar" la pieza defectuosa, para su fácil localización; y después corregirla, evitando así tener que detener por completo la máquina y continuar con el proceso.

Métodos de Advertencia

Este tipo de método advierte al trabajador de las anormalidades ocurridas, llamando su atención, mediante la activación de una luz o sonido. Si el trabajador no se da cuenta de la señal de advertencia, los defectos seguirán ocurriendo, por lo que este tipo de método tiene una función reguladora menos poderosa que la de métodos de control.

En cualquier situación los métodos de control son por mucho más efectivos que los métodos de advertencia, por lo que los de tipo control deben usarse tanto como sean posibles. El uso de métodos de advertencia se debe considerar cuando el impacto de las anormalidades sea mínimo, o cuando factores técnicos y/o económicos hagan la implantación de un método de control una tarea extremadamente difícil.

Clasificación de los métodos Poka Yoke

1. Métodos de contacto. Son métodos donde un dispositivo sensitivo detecta las anormalidades en el acabado o las dimensiones de la pieza, donde puede o no haber contacto entre el dispositivo y el producto.

2. Método de valor fijo. Con este método, las anormalidades son detectadas por medio de la inspección de un número específico de movimientos, en casos donde las operaciones deben de repetirse un número predeterminado de veces.

3. Método del paso-movimiento. Estos son métodos en el cual las anormalidades son detectadas inspeccionando los errores en movimientos estándares donde las operaciones son realizadas con movimientos predeterminados. Este extremadamente efectivo método tiene un amplio rango de aplicación, y la posibilidad de su uso debe de considerarse siempre que se este planeando la implantación de un dispositivo Poka Yoke.

Medidores utilizados en sistemas Poka Yoke

Los tipos de medidores pueden dividirse en tres grupos:

  • Medidores de contacto

Interruptor en límites, microinterruptores. Estos verifican la presencia y posición de objetos y detectan herramientas rotas, etc. Algunos de los interruptores de límites están equipados con luces para su fácil uso.

Interruptores de tacto. Se activan al detectar una luz en su antena receptora, este tipo de interruptores pueden detectar la presencia de objetos, posición, dimensiones, etc., con una alta sensibilidad.

Transformador diferencial. Cuando se pone en contacto con un objeto, un transformador diferencial capta los cambios en los ángulos de contacto, así como las diferentes líneas en fuerzas magnéticas, esto es de gran ayuda para objetos con un alto grado de precisión.

Trimetron. Un calibrador digital es lo que forma el cuerpo de un "trimetron", los valores de los límites de una pieza pueden ser fácilmente detectados, así como su posición real. Este es un dispositivo muy conveniente ya que los límites son seleccionados electrónicamente, permitiendo al dispositivo detectar las medidas que son aceptadas, y las piezas que no cumplen, son rechazadas.

Relevador de niveles líquidos. Este dispositivo puede detectar niveles de líquidos usando flotadores

  • Medidores sin-contacto

Sensores de proximidad. Estos sistemas responden al cambio en distancias desde objetos y los cambios en las líneas de fuerza magnética. Por esta razón deben de usarse en objetos que sean susceptibles al magnetismo.

Interruptores fotoeléctricos (transmisores y reflectores). Interruptores fotoeléctricos incluyen el tipo transmisor, en el que un rayo transmitido entre dos interruptores fotoeléctricos es interrumpido, y el tipo reflector, que usa el reflejo de las luces de los rayos. Los interruptores fotoeléctricos son comúnmente usados para piezas no ferrosas, y los de tipo reflector son muy convenientes para distinguir diferencias entre colores. Pueden también detectar algunas áreas por la diferencia entre su color.

Sensores de luces (transmisores y reflectores). Este tipo de sistemas detectores hacen uso de un rayo de electrones. Los sensores de luces pueden ser reflectores o de tipo transmisor.

Sensores de fibras. Estos son sensores que utilizan fibras ópticas.

Sensores de áreas. La mayoría de los sensores detectan solo interrupciones en

líneas, pero los sensores de áreas pueden detectar aleatoriamente interrupciones

en alguna área.

Sensores de posición. Son un tipo de sensores que detectan la posición de la

pieza.

Sensores de dimensión. Son sensores que detectan si las dimensiones de la

pieza o producto son las correctas.

Sensores de desplazamiento. Estos son sensores que detectan deformaciones,

grosor y niveles de altura.

Sensores de metales. Estos sensores pueden detectar cuando los productos

pasan o no pasan por un lugar, también pueden detectar la presencia de metal

mezclado con material sobrante.

Sensor de colores. Estos sensores pueden detectar marcas de colores, o

diferencias entre colores. A diferencia de los interruptores fotoeléctricos estos no

necesariamente tienen que ser utilizados en piezas no ferrosas.

Sensores de vibración. Pueden detectar cuando un articulo esta pasando, la

posición de áreas y cables dañados.

Sensor de piezas dobles. Estos son sensores que pueden detectar dos

productos que son pasados al mismo tiempo.

Sensores de roscas. Son sensores que pueden detectar maquinados de roscas

incompletas.

Fluido de elementos. Estos dispositivos detectan cambios en corrientes de aire

ocasionados por la colocación o desplazamiento de objetos, también pueden

detectar brocas rotas o dañadas.

  • Medidores de presión, temperatura, corriente eléctrica, vibración, número de ciclos, conteo, y transmisión de información

Detector de cambios de presión. El uso de calibradores de presión o interruptores sensitivos de presión, permite detectar la fuga de aceite de alguna manguera.

Detector de cambios de temperatura. Los cambios de temperatura pueden ser detectados por medio de termómetros, termostatos, coples térmicos, etc. Estos sistemas pueden ser utilizados para detectar la temperatura de una superficie, partes electrónicas y motores, para lograr un mantenimiento adecuado de la maquinaria, y para todo tipo de medición y control de temperatura en el ambiente industrial.

Detectores de fluctuaciones en la corriente eléctrica. Relevadores métricos son muy convenientes por ser capaces de controlar las causas de los defectos por medio de la detección de corrientes eléctricas.

Detectores de vibraciones anormales. Miden las vibraciones anormales de una maquinaria que pueden ocasionar defectos, es muy conveniente el uso de este tipo de detectores de vibración.

Detectores de conteos anormal. Para este propósito se deben de usar contadores, ya sean con relevadores o con fibras como sensores.

Detectores de tiempo y cronometrajes. Cronómetros, relevadores de tiempo, unidades cronometradas, e interruptores de tiempo pueden usarse para este propósito.

Medidores de anormalidades en la transmisión de información. Puede usarse luz o sonido, en algunas áreas es mejor un sonido ya que capta más rápidamente la atención del trabajador ya que si este no ve la luz de advertencia, los errores van a seguir ocurriendo. El uso de colores mejora de alguna manera la capacidad de llamar la atención que la luz simple, pero una luz parpadeante es mucho mejor.

Comparación en la aplicación de distintos tipos de dispositivos contra errores

La siguiente figura nos indica los tipos de dispositivos contra errores que existen actualmente, quien los emplea, el costo clasificado en bajo, medio, alto o muy alto, cuánto mantenimiento requiere y la confiabilidad del dispositivo.


Tipo

Fuente

Costo

Mantenimiento

Confiabilidad

Físico / mecánico 

Empleados

Bajo

Muy bajo

Muy alta 

Electro / mecánico

Especialistas

Más alto

Bajo

Alta

Electrónicos

Poco especialistas

Más alto

Bajo pero

especializado

Alta

Tipos de poka-yoke

Se puede observar que conforme la aplicación se torna más tecnológica, el costo también se incrementa. Lo que se necesita hacer es encontrar la solución al problema, no justificar la compra de un dispositivo muy costoso.

Características principales de un buen sistema Poka Yoke:

  • Son simples y baratos. Si son demasiado complicados o caros, su uso no será rentable

  • Son parte del proceso. Son parte del proceso, llevan a cabo “100%” de la inspección

  • Son puestos cerca o en el lugar donde ocurre el error. Proporcionan feedback rápidamente par que los errores puedan corregirse

Indicador Visual (Andon)

Término japonés para alarma, indicador visual o señal, utilizado para mostrar el estado de producción, utiliza señales de audio y visuales. Es un despliegue de luces o señales luminosas en un tablero que indican las condiciones de trabajo en el piso de producción dentro del área de trabajo, el color indica el tipo de problema o condiciones de trabajo. Andon significa ¡AYUDA!

El Andon puede consistir en una serie de lámparas en cada proceso o un tablero de las lámparas que cubren un área entera de la producción. El Andon en un área de asamblea será activado vía una cuerda del tirón o un botón de empuje por el operador. Un Andon para una línea automatizada se puede interconectar con las máquinas para llamar la atención a la necesidad actual de las materias primas. Andon es una herramienta usada para construir calidad en nuestros procesos.  

Si un problema ocurre, la tabla de Andon se iluminará para señalar al supervisor que la estación de trabajo está en problema. Una melodía se usa junto con la tabla de Andon para proporcionar un signo audible para ayudar al supervisor a comprender hay un problema en su área. Una vez el supervisor evalúa la situación, él o ella puede tomar pasos apropiados para corregir el problema. Los colores usados son:

  • Rojo: Máquina descompuesta

  • Azul: Pieza defectuosa

  • Blanco : Fin de lote de producción

  • Amarillo: Esperando por cambio de modelo

  • Verde: Falta de Material

  • No luz: Sistema operando normalmente

Cambio rápido de modelo (SMED)

SMED significa “Cambio de modelo en minutos de un sólo dígito”, Son teorías y técnicas para realizar las operaciones de cambio de modelo en menos de 10 minutos. Desde la última pieza buena hasta la primera pieza buena en menos de 10 minutos. El sistema SMED nació por necesidad para lograr la producción Justo a Tiempo. Este sistema fue desarrollado para acortar los tiempos de la preparación de máquinas, posibilitando hacer lotes más pequeños de tamaño. Los procedimientos de cambio de modelo se simplificaron usando los elementos más comunes o similares usados habitualmente.

Objetivos de SMED

  • Facilitar los pequeños lotes de producción

  • Rechazar la fórmula de lote económico

  • Correr cada parte cada día (fabricar)

  • Alcanzar el tamaño de lote a 1

  • Hacer la primera pieza bien cada vez

  • Cambio de modelo en menos de 10 minutos

  • Aproximación en 3 pasos



  1. Eliminar el tiempo externo (50%)

Gran parte del tiempo se pierde pensando en lo que hay que hacer después o esperando a que la máquina se detenga. Planificar las tareas reduce el tiempo (el orden de las partes, cuando los cambios tienen lugar, que herramientas y equipamiento es necesario, qué personas intervendrán y los materiales de inspección necesarios). El objetivo es transformar en un evento sistemático el proceso, no dejando nada al azar. La idea es mover el tiempo externo a funciones externas.

  1. Estudiar los métodos y practicar (25%)

El estudio de tiempos y métodos permitirá encontrar el camino más rápido y mejor para encontrar el tiempo interno remanente. Las tuercas y tornillos son unos de los mayores causantes de demoras. La unificación de medidas y de herramientas permite reducir el tiempo. Duplicar piezas comunes para el montaje permitirá hacer operaciones de forma externa ganando este tiempo de operaciones internas.

Para mejores y efectivos cambios de modelo se requiere de equipos de gente.

Dos o más personas colaboran en el posicionado, alcance de materiales y uso de las herramientas. La eficacia esta condicionada a la práctica de la operación. El tiempo empleado en la práctica bien vale ya que mejoraran los resultados.

  1. Eliminar los ajustes (15%)

Implica que los mejores ajustes son los que no se necesitan, por eso se recurre a fijar las posiciones.

Se busca recrear las mismas circunstancias que la de la última vez.

Como muchos ajustes pueden ser hechos como trabajo externo se requiere fijar las herramientas.

Los ajustes precisan espacio para acomodar los diferentes tipos de matrices, troqueles, punzones o utillajes por lo que requiere espacios estándar.

Beneficios de SMED

  • Producir en lotes pequeños

  • Reducir inventarios

  • Procesar productos de alta calidad

  • Reducir los costos

  • Tiempos de entrega más cortos

  • Ser más competitivos

  • Tiempos de cambio más confiables

  • Carga más equilibrada en la producción diaria

Fases para la reducción del cambio de modelo

Fase 1. Separar la preparación interna de la externa

Preparación interna son todas las operaciones que precisan que se pare la máquina y externas las que pueden hacerse con la máquina funcionando. Una vez parada la máquina, el operario no debe apartarse de ella para hacer operaciones externas. El objetivo es estandarizar las operaciones de modo que con la menor cantidad de movimientos se puedan hacer rápidamente los cambios, esto permite disminuir el tamaño de los lotes.

Fase 2. Convertir cuanto sea posible de la preparación interna en preparación externa

La idea es hacer todo lo necesario en preparar – troqueles, matrices, punzones,...- fuera de la máquina en funcionamiento para que cuando ésta se pare, rápidamente se haga el cambio necesario, de modo de que se pueda comenzar a funcionar rápidamente.

Fase 3. Eliminar el proceso de ajuste

Las operaciones de ajuste suelen representar del 50 al 70% del tiempo de preparación interna. Es muy importante reducir este tiempo de ajuste para acortar el tiempo total de preparación. Esto significa que se tarda un tiempo en poner a andar el proceso de acuerdo a la nueva especificación requerida. En otras palabras los ajustes normalmente se asocian con la posición relativa de piezas y troqueles, pero una vez hecho el cambio se demora un tiempo en lograr que el primer producto bueno salga bien – se llama ajuste en realidad a las no conformidades que a base de prueba y error va llegando hasta hacer el producto de acuerdo a las especificaciones –. Además se emplea una cantidad extra de material.
1   ...   4   5   6   7   8   9   10   11   12

similar:

2011 Unidad 1: Evolución del Mantenimiento iconExploracion y produccion unidad de Perforación y Mantenimiento de Pozos

2011 Unidad 1: Evolución del Mantenimiento iconApuntes Evolución cmc 2011/12

2011 Unidad 1: Evolución del Mantenimiento iconTema la evolucióN. Elorigen del hombre la evolución y los mecanismos del proceso evolutivo

2011 Unidad 1: Evolución del Mantenimiento icon2011 Introducción a la Producción Animal fcv unne unidad temática 1: zootecnia

2011 Unidad 1: Evolución del Mantenimiento iconLa nutrición es principalmente el aprovechamiento de los nutrientes....

2011 Unidad 1: Evolución del Mantenimiento iconLa palabra evolución significa desarrollo. La evolución es el nombre...

2011 Unidad 1: Evolución del Mantenimiento iconErgonomia : en la gestión del mantenimiento

2011 Unidad 1: Evolución del Mantenimiento iconPrograma mensual de mantenimiento para el control del moho

2011 Unidad 1: Evolución del Mantenimiento iconEstablecimiento de oclusión clase I, corrimiento mesial de primera...

2011 Unidad 1: Evolución del Mantenimiento iconQue significa `curar, cuidar, medicar', ciencia y arte que trata...




Todos los derechos reservados. Copyright © 2019
contactos
b.se-todo.com