Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más




descargar 164.83 Kb.
títuloAntes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más
página3/5
fecha de publicación07.03.2016
tamaño164.83 Kb.
tipoDocumentos
b.se-todo.com > Biología > Documentos
1   2   3   4   5

Inmunidad

Los virus constituyen los enemigos más formidables del hombre, sin contar el propio hombre. En virtud de su íntima asociación con las propias células del cuerpo, los virus se han mostrado absolutamente invulnerables al ataque de los medicamentos o a cualquier otra arma artificial, y aún así, el hombre ha sido capaz de resistir contra ellos, incluso en las condiciones más desfavorables. El organismo humano está dotado de impresionantes defensas contra la enfermedad.
Analicemos la peste negra, la gran plaga del siglo XIV. Atacó a una Europa que vivía en una aterradora suciedad, carente de cualquier concepto moderno de limpieza e higiene, sin instalación de cañerías de desagüe, sin forma alguna de tratamiento médico razonable, una población aglutinada e indefensa. Claro que la gente podía huir de las aldeas infestadas, pero el enfermo fugitivo tan sólo servía para propagar las epidemias más lejos y con mayor rapidez. Pese a todo ello, tres cuartas partes de la población resistieron con éxito los ataques de la infección. En tales circunstancias, lo realmente asombroso no fue que muriera uno de cada cuatro, sino que sobrevivieran tres de cada cuatro.
Es evidente que existe eso que se llama la resistencia natural frente a cualquier enfermedad. De un número de personas expuestas gravemente a una enfermedad contagiosa, algunos la sufren con carácter relativamente débil, otros enferman de gravedad y un cierto número muere. Existe también lo que se denomina inmunidad total, a veces congénita y otras adquirida. Por ejemplo, un solo ataque de sarampión, paperas o varicela, deja por lo general inmune a una persona para el resto de su vida frente a aquella determinada enfermedad.
Y resulta que esas tres enfermedades tienen su origen en un virus. Y, sin embargo, se trata de infecciones relativamente de poca importancia, rara vez fatales. Corrientemente, el sarampión produce tan sólo síntomas ligeros, al menos en los niños. ¿Cómo lucha el organismo contra esos virus, fortificándose luego de forma que, si el virus queda derrotado, jamás vuelve a atacar? La respuesta a esa pregunta constituye un impresionante episodio de la moderna ciencia médica, y para iniciar el relato hemos de retroceder a la conquista de la viruela.
Hasta finales del siglo XVIII, la viruela era una enfermedad particularmente temible, no sólo porque resultaba con frecuencia fatal, sino también porque aquellos que se recuperaban quedaban desfigurados de modo permanente. Si el caso era leve, dejaba marcado el rostro; un fuerte ataque podía destruir toda belleza e incluso toda huella de humanidad. Un elevado porcentaje de la población ostentaba en sus rostros la marca de la viruela. Y quienes aún no la habían sufrido vivían con el constante temor de verse atacados por ella.
En el siglo XVII, la gente, en Turquía, empezó a infectarse voluntariamente y de forma deliberada de viruela con la esperanza de hacerse inmunes a un ataque grave.
Solían arañarse con el suero de ampollas de una persona que sufriera un ataque ligero. A veces producían una ligera infección, otras la desfiguración o la muerte que trataran de evitar. Era una decisión arriesgada, pero nos da una idea del horror que se sentía ante dicha enfermedad el hecho de que la gente estuviera dispuesta a arriesgar ese mismo horror para poder huir de él.
En 1718, la famosa beldad Lady Mary Wortley Montagu tuvo conocimiento de dicha práctica durante su estancia en Turquía, acompañando a su marido enviado allí por un breve período como embajador británico, e hizo que inocularan a sus propios hijos. Pasaron la prueba sin sufrir daño. Pero la idea no arraigó en Inglaterra, quizás, en parte, porque se consideraba a Lady Montagu notablemente excéntrica. Un caso similar, en Ultramar, fue el de Zabdiel Boylston, médico americano. Durante una epidemia de viruela en Boston, inoculó a doscientas cuarenta y una personas, de las que seis murieron. Fue víctima, por ello, de considerables críticas.
En Gloucestershire, alguna gente del campo tenía sus propias ideas con respecto a la forma de evitar la viruela. Creían que un ataque de vacuna, enfermedad que atacaba a las vacas y, en ocasiones, a las personas, haría inmune a la gente, tanto frente a la vacuna como a la viruela. De ser verdad resultaría maravilloso, ya que la vacuna rara vez producía ampollas y apenas dejaba marcas. Un médico de Gloucestershire, el doctor Edward Jenner, decidió que acaso hubiera algo de verdad en la «superstición» de aquellas gentes. Observó que las lecheras tenían particular predisposición a contraer la vacuna y también, al parecer, a no sufrir las marcas de la viruela. (Quizá la moda en el siglo XVIII de aureolar de romanticismo a las hermosas lecheras se debiera al hecho del limpio cutis de éstas, que resultaba realmente bello en un mundo marcado por las viruelas.) ¿Era posible que la vacuna y la viruela fueran tan semejantes, que una defensa constituida por el organismo contra la vacuna lo protegiera también contra la viruela? El doctor Jenner empezó a ensayar esa idea con gran cautela (probablemente haciendo experimentos, en primer lugar, con su propia familia). En 1796, se arriesgó a realizar la prueba suprema. Primero inoculó a un chiquillo de ocho años, llamado James Phipps, con vacuna, utilizando fluido procedente de una ampolla de vacuna en la mano de una lechera. Dos meses más tarde se presentó la parte crucial y desesperada del experimento. Jenner inoculó deliberadamente al pequeño James con la propia viruela.
El muchacho no contrajo la enfermedad. Había quedado inmunizado.
Jenner designó el proceso con el nombre de «vacunación», del latín vaccinia, nombre que se da a la vacuna. La vacunación se propagó por Europa como un incendio. Constituye uno de los raros casos de una revolución en la Medicina adoptada con facilidad y casi al instante, lo que da perfecta idea del pánico que inspiraba la viruela y la avidez del público por probar cualquier cosa prometedora de evasión. Incluso la profesión médica presentó tan sólo una débil oposición a la vacunación... aún cuando sus líderes ofrecieron cuanta resistencia les fue posible. Cuando, en 1813, se propuso la elección de Jenner para el Colegio Real de Médicos de Londres, se le denegó la admisión con la excusa de que no poseía conocimientos suficientes sobre Hipócrates y Galeno.
Hoy día, la viruela ha sido prácticamente desterrada de los países civilizados, aunque el terror que sigue inspirando sea tan fuerte como siempre. La comunicación de un solo caso en cualquier ciudad importante basta para catapultar virtualmente a toda la población hacia las clínicas a fin de someterse a revacunación.
Durante más de siglo y medio, los intentos por descubrir inoculaciones similares para otras enfermedades graves no dieron resultado alguno. Pasteur fue el primero en dar el siguiente paso hacia delante. Descubrió, de manera más o menos accidental, que podía transformar una enfermedad grave en benigna, mediante la debilitación del microbio que la originaba.
Pasteur trabajaba en una bacteria que causaba el cólera a los pollos. Concentró una preparación tan virulenta, que una pequeña dosis inyectada bajo la piel de un pollo lo mataba en un día. En una ocasión utilizó un cultivo que llevaba preparado una semana. Esta vez, los pollos enfermaron sólo ligeramente, recuperándose luego.
Pasteur llegó a la conclusión de que el cultivo se había estropeado y preparó un nuevo y virulento caldo. Pero su nuevo cultivo no mató a los pollos que se habían recuperado de la dosis de bacteria «estropeada». Era evidente que la infección con la bacteria debilitada había dotado a los pollos con una defensa contra las nuevas y virulentas bacterias.
En cierto modo, Pasteur había producido una «vacuna» artificial, para aquella «viruela» especial. Admitió la deuda filosófica que tenía con Jenner, denominando también vacunación a su procedimiento, aún cuando nada tenía que ver con la «vacuna». Desde entonces se ha generalizado el término para significar inoculaciones contra cualquier enfermedad, y la preparación utilizada a tal fin se llama «vacuna».
Pasteur desarrolló otros métodos para debilitar (o «atenuar») los agentes de la enfermedad. Por ejemplo, descubrió que cultivando la bacteria del ántrax a altas temperaturas se producía una cadena debilitada capaz de inmunizar a los animales contra la enfermedad. Hasta entonces, el ántrax había sido tan desesperadamente fatal y contagioso que tan pronto como una res caía víctima de él, había que matar y quemar a todo el rebaño.
Sin embargo, el mayor triunfo de Pasteur fue sobre el virus de la enfermedad llamada hidrofobia o «rabia» (del latín rabies, debido a que la enfermedad atacaba al sistema nervioso, produciendo síntomas similares a los de la locura). Una persona mordida por un perro rabioso, al cabo de un período de incubación de uno o dos meses, era atacada por síntomas violentos, falleciendo casi invariablemente de muerte horrible.
Pasteur no lograba localizar a un microbio visible como agente de la enfermedad (desde luego, nada sabía sobre virus), de manera que tenía que utilizar animales vivos para cultivarlo. Acostumbraba a inyectar el fluido de infecciones en el cerebro de un conejo, lo dejaba incubar, machacaba la médula espinal, inyectaba el extracto en el cerebro de otro conejo, y así sucesivamente. Pasteur atenuaba sus preparados, dejándolos madurar y poniéndolos a prueba de manera continua hasta que el extracto ya no podía provocar la enfermedad en un conejo. Entonces inyectó el virus atenuado en un perro, que sobrevivió. Al cabo de cierto tiempo infectó al perro con hidrofobia en toda su virulencia, descubriendo que el animal estaba inmunizado.
En 1885, le llegó a Pasteur la oportunidad de intentar la curación de un ser humano. Le llevaron a un muchacho de nueve años, Joseph Maister, a quien mordiera gravemente un perro rabioso. Con vacilación y ansiedad considerables. Pasteur sometió al muchacho a inoculaciones cada vez menos atenuadas, esperando crear una resistencia antes de transcurrido el período de incubación. Triunfó. Al menos, el muchacho sobrevivió. (Meister se convirtió en el conserje del «Instituto Pasteur», y en 1940 se suicidó al ordenarle los militares nazis, en París, que abriera la tumba de Pasteur.)
En 1890, un médico militar alemán llamado Emil von Behring, que trabajaba en el laboratorio de Koch, puso a prueba otra idea. ¿Por qué correr el riesgo de inyectar el propio microbio, incluso en forma atenuada, en un ser humano? Sospechando que el agente de la enfermedad pudiera dar origen a que el organismo fabricara alguna sustancia defensiva, ¿no sería lo mismo infectar a un animal con el agente, extraer la sustancia defensiva que produjera e inyectarla en el paciente humano? Von Behring descubrió que su idea daba resultado. La sustancia defensiva se integraba en el suero sanguíneo, y Von Behring la denominó «antitoxina». Logró producir en los animales antitoxinas contra el tétanos y la difteria.
Su primera aplicación de la antitoxina diftérica a un niño que padecía dicha enfermedad obtuvo un éxito tan sensacional que se adoptó inmediatamente el tratamiento, logrando reducir en forma drástica el índice de mortandad por difteria.
Paul Ehrlich (que más tarde descubriría la «bala mágica» para la sífilis) trabajaba con Von Behring y fue él quien probablemente calculó las dosis apropiadas de antitoxina. Más adelante, separóse de Von Behring (Ehrlich era un individuo irascible, que fácilmente se enemistaba con cualquiera) y prosiguió trabajando solo, con todo detalle, en la terapéutica racional del suero. Von Behring recibió el premio Nobel de Medicina y Fisiología en 1901, el primer año que fue concedido. Ehrlich también fue galardonado con el Premio Nobel en 1908, juntamente con el biólogo ruso Meshnikov.
La inmunidad que confiere una antitoxina dura tan sólo mientras ésta permanece en la sangre. Pero el bacteriólogo francés Gaston Ramón descubrió que, tratando la toxina de la difteria o del tétanos con formaldehído o calor, podía cambiar su estructura de tal forma que la nueva sustancia (denominada «toxoide») podía inyectarse sin peligro alguno al paciente humano, en cuyo caso la antitoxina producida por el propio paciente dura más que la procedente de un animal; además, pueden inyectarse nuevas dosis del toxoide siempre que sea necesario para renovar la inmunidad. Una vez introducido el toxoide en 1925, la difteria dejó de ser una aterradora amenaza.
También se utilizaron las reacciones séricas para descubrir la presencia de la enfermedad. El ejemplo más conocido es el de la «prueba de Wasserman», introducida por el bacteriólogo alemán August von Wasserman en 1906, para descubrir la sífilis. Estaba basada en técnicas desarrolladas primeramente por un bacteriólogo belga, Jules Bordet, quien trabajaba con fracciones de suero que llegaron a ser denominadas «complemento». En 1919, Bordet recibió por su trabajo el premio Nobel de Medicina y Fisiología.
La lucha laboriosa de Pasteur con el virus de la rabia demostró la dificultad de tratar con los virus. Las bacterias pueden cultivarse, manipularse y atenuarse por medios artificiales en el tubo de ensayos. Esto no es posible con el virus; sólo pueden cultivarse sobre tejido vivo. En el caso de la viruela, los anfitriones vivos para la materia experimental (el virus de la vacuna) fueron las vacas y las lecheras. En el caso de la rabia, Pasteur recurrió a conejos. Pero, en el mejor de los casos, los animales vivos constituyen un medio difícil, caro y exigen gran pérdida de tiempo como medio para cultivar microorganismos.
En el primer cuarto de este siglo, el biólogo francés, Alexis Carrel, obtuvo considerable fama con un hecho que demostró poseer inmenso valor para la investigación médica... la conservación en tubos de ensayo de trocitos de tejidos vivos. Carrel llegó a interesarse por este tipo de investigación a través de su trabajo como cirujano. Desarrolló nuevos métodos de trasplante de vasos sanguíneos y órganos de animales, por cuyos trabajos recibió, en 1912, el premio Nobel de Medicina y Fisiología. Naturalmente, tenía que mantener vivo el órgano extraído mientras se preparaba a trasplantarlo. Desarrolló un sistema para alimentarlo que consistía en bañar el tejido con sangre y suministrar los diversos extractos e iones. Como contribución incidental, Carrel desarrolló, con la ayuda de Charles Augustus Lindbergh, un «corazón mecánico» rudimentario para bombear la sangre a través del tejido. Fue la vanguardia de los «corazones», «pulmones» y «riñones» artificiales cuyo uso se ha hecho habitual en cirugía.
Los procedimientos de Carrel eran lo bastante buenos para mantener vivo durante treinta y cuatro años un trozo de corazón de un pollo embrionario... una vida mucho más larga que la del propio pollo. Carrel intentó incluso utilizar sus cultivos de tejidos para desarrollar virus... y en cierto modo lo logró. La única dificultad consistía en que también crecía la bacteria en los tejidos y había que adoptar unas precauciones asépticas tan extremadas con el fin de mantener los virus puros, que resultaba más fácil recurrir a animales.
No obstante, la idea del embrión de pollo parecía la más acertada, por así decirlo. Mejor que sólo un trozo de tejido sería un todo... el propio embrión de pollo. Se trata de un organismo completo, protegido por la cáscara del huevo y equipado con sus propias defensas naturales contra la bacteria. También es barato y fácil de adquirir en cantidad. Y en 1931, el patólogo Ernest W. Goodpasture y sus colaboradores de la Universidad Vanderbilt lograron trasplantar un virus dentro de un embrión del pollo. Por vez primera pudieron cultivarse virus puros casi tan fácilmente como las bacterias.
En 1937 se logró la primera conquista médica de verdadera trascendencia con el cultivo de virus en huevos fértiles. En el Instituto Rockefeller, los bacteriólogos proseguían aún la búsqueda para una mayor protección contra el virus de la fiebre amarilla. Pese a todo, era imposible erradicar totalmente al mosquito y en los trópicos los monos infectados mantenían una reserva constante y amenazadora de la enfermedad. El bacteriólogo sudafricano Max Theiler, del Instituto, se dedicó a producir un virus atenuado de la fiebre amarilla. Hizo pasar el virus a través de doscientos ratones y cien embriones de pollo hasta obtener un mutante que, causando tan sólo leves síntomas, aún así proporcionaba la inmunidad absoluta contra la fiebre amarilla. Por este logro, Theiler recibió, en 1951, el premio Nobel de Medicina y Fisiología.
Una vez en marcha, nada es superior al cultivo sobre placas de cristal, en rapidez, control de las condiciones y eficiencia. En los últimos años cuarenta, John Franklin Enders, Thomas Huckle Weller y Frederick Chapman Robbins, de la Facultad de Medicina de Harvard, volvieron al enfoque de Carrel. (Éste había muerto en 1944 y no sería testigo de su triunfo.) En esta ocasión disponían de un arma nueva y poderosa contra la bacteria contaminadora del tejido cultivado... los antibióticos. Incorporaron penicilina y estreptomicina al suministro de sangre que mantenía vivo el tejido y descubrieron que podían cultivar virus sin dificultad. Siguiendo un impulso, ensayaron con el virus de la poliomielitis. Asombrados, lo vieron florecer en aquel medio. Constituía la brecha por la que lograrían vencer a la polio, y los tres hombres recibieron, en 1954, el premio Nobel de Medicina y Fisiología.
En la actualidad puede cultivarse el virus de la poliomielitis en un tubo de ensayo en lugar de hacerla sólo en monos (que son sujetos de laboratorios caros y temperamentales). Así fue posible la experimentación a gran escala con el virus. Gracias a la técnica del cultivo de tejidos, Jonas E. Salk, de la Universidad de Pittsburgh, pudo experimentar un tratamiento químico del virus para averiguar que los virus de la polio, matados con formaldehído, pueden seguir produciendo reacciones inmunológicas en el organismo, permitiéndole desarrollar la hoy famosa vacuna Salk.
El importante índice de mortalidad alcanzado por la polio, su preferencia por los niños (hasta el punto de que ha llegado a denominársela «parálisis infantil»), el hecho de que parece tratarse de un azote moderno, sin (epidemias registradas con anterioridad a 1840 y, en particular, el interés mostrado en dicha enfermedad por su eminente víctima, Franklin D. Roosevelt, convirtió su conquista en una de las victorias más celebradas sobre una enfermedad en la historia de la Humanidad. Probablemente, ninguna comunicación médica fue acogida jamás con tanto entusiasmo como el informe, emitido en 1955 por la comisión evaluadora declarando efectiva la vacuna Salk. Desde luego, el acontecimiento merecía tal celebración, mucho más de lo que lo merecen la mayor parte de las representaciones que incitan a la gente a agolparse y tratar de llegar los primeros. Pero la ciencia no se nutre del enloquecimiento o la publicidad indiscriminada. El apresuramiento en dar satisfacción a la presión pública por la vacuna motivó que se pusieran en circulación algunas muestras defectuosas, generadoras de la polio, y el furor que siguió al entusiasmo hizo retroceder al programa de vacunación contra la enfermedad.
Sin embargo, ese retroceso fue subsanado y la vacuna Salk se consideró efectiva y, debidamente preparada, sin peligro alguno. En 1957, el microbiólogo polaco-americano Albert Bruce Sabin dio otro paso adelante. No utilizó virus muerto, que de no estarlo completamente puede resultar peligroso, sino una cadena de virus vivos incapaces de producir la enfermedad por sí misma, pero capaces de establecer la producción de anticuerpos apropiados, Esta «vacuna Sabin» puede, además, tomarse por vía oral, no requiriendo, por tanto, la inyección. La vacuna Sabin fue adquiriendo popularidad, primero en la Unión Soviética y posteriormente en los países europeos del Este; en 1960, se popularizó también su empleo en los Estados Unidos, extinguiéndose así el temor a la poliomielitis.
Pero, exactamente, ¿cómo actúa una vacuna? La respuesta a esta pregunta puede darnos algún día la clave química de la inmunidad.
Durante más de medio siglo, los biólogos han considerado como «anticuerpos» las principales defensas del organismo contra la infección. (Desde luego, también están los glóbulos blancos llamados «fagocitos» que devoran las bacterias. Esto lo descubrió, en 1883, el biólogo ruso Ilia Ilich Meshnikov, que más tarde sucedería a Pasteur como director del Instituto Pasteur de París y que en 1908 compartiera el premio Nobel de Medicina y Fisiología con Ehrlich. Pero los fagocitos no aportan ayuda alguna contra los virus y no parece que tomen parte en el proceso de inmunidad que estamos examinando.) A un virus, o, en realidad, a casi todas las sustancias extrañas que se introducen en la química del organismo, se les llama «antígenos». El anticuerpo es una sustancia fabricada por el cuerpo para luchar contra el antígeno específico. Pone a éste fuera de combate, combinándose con él.
Mucho antes de que los químicos lograran dominar al anticuerpo, estaban casi seguros de que debía tratarse de proteínas. Por una parte, los antígenos más conocidos eran proteínas y era de presumir que únicamente una proteína lograría dar alcance a otra. Tan sólo una proteína podía tener la necesaria estructura sutil para aislarse y combinar con un antígeno determinado.
En los primeros años de la década de 1920, Landsteiner (el descubridor de los grupos sanguíneos) realizó una serie de experimentos que demostraron claramente que los anticuerpos eran, en realidad, en extremo específicos. Las sustancias que utilizara para generar anticuerpos no eran antígenos, sino compuestos mucho más simples, de estructura bien conocida. Eran los llamados «ácidos arsanílicos», compuestos que contenían arsénico. En combinación con una proteína simple, como, por ejemplo, la albúmina de la clara de huevo, un ácido arsanílico actuaba como antígeno; al ser inyectado en un animal, originaba un anticuerpo en el suero sanguíneo. Además, dicho anticuerpo era especifico para el ácido arsanílico; el suero sanguíneo del animal aglutinaría tan sólo la combinación arsanílico-albúmina y no únicamente la albúmina. Desde luego, en ocasiones puede hacerse reaccionar el anticuerpo nada más que con el ácido arsanílico, sin combinarlo con albúmina. Landsteiner demostró también que cambios muy pequeños en la estructura del ácido arsanílico se reflejarían en el anticuerpo. Un anticuerpo desarrollado por cierta variedad de ácido arsanílico no reaccionaría con una variedad ligeramente alterada.
Landsteiner designó con el nombre de «haptenos» (del griego «hapto», que significa enlazar, anudar) aquellos compuestos tales como los ácidos arsanílicos que, al combinarse con proteínas, pueden dar origen a los anticuerpos. Es de presumir que cada antígeno natural tenga en su molécula una región específica que actúe como un hapteno. Según esta teoría, un germen o virus capaz de servir de vacuna es aquel cuya estructura se ha modificado suficientemente para reducir su capacidad de dañar las células, pero que aún continúa teniendo intacto su grupo de haptenos, de tal forma que puede originar la formación de un anticuerpo específico.
Sería interesante conocer la naturaleza química de los haptenos naturales. Si llegara a determinarse, quizá fuera posible utilizar un hapteno, tal vez en combinación con algunas proteínas inofensivas, en calidad de vacuna que originara anticuerpos para un antígeno específico. Con ello se evitaría la necesidad de recurrir a toxinas o virus atenuados, que siempre acarrean un cierto pequeño riesgo.
Aún no se ha determinado la forma en que un antígeno hace surgir un anticuerpo. Ehrlich creía que el organismo contiene normalmente una pequeña reserva de todos los anticuerpos que pueda necesitar y que cuando un antígeno invasor reacciona con el anticuerpo apropiado, estimula al organismo a producir una reserva extra de ese anticuerpo determinado. Algunos inmunólogos aún siguen adhiriéndose a esta teoría o a su modificación, y, sin embargo, es altamente improbable que el cuerpo esté preparado con anticuerpos específicos para todos los antígenos posibles, incluyendo aquellas sustancias no naturales, como los ácidos arsanílicos.
La otra alternativa sugerida es la de que el organismo posee alguna molécula proteínica generalizada, capaz de amoldarse a cualquier antígeno. Entonces el antígeno actúa como patrón para modelar el anticuerpo específico formado por reacción a él. Pauling expuso dicha teoría en 1940. Sugirió que los anticuerpos específicos son variantes de la misma molécula básica, plegada simplemente de distintas formas. En otras palabras, se moldea el anticuerpo para que se adapte a su antígeno como un guante se adapta a la mano.
Sin embargo, en 1969, los progresos en el análisis de las proteínas permitieron que un equipo dirigido por Gerald M. Edelman determinara la estructura aminoácida de un anticuerpo típico compuesto por más de mil aminoácidos. Sin duda, esto allanará el camino para descubrir de qué modo trabajan esas moléculas, algo que aún no conocemos bien.
En cierta forma, la propia especificidad de los anticuerpos constituye una desventaja. Supongamos que un virus se transforma de tal modo que su proteína adquiere una estructura ligeramente diferente. A menudo, el antiguo anticuerpo del virus no se adaptará a la nueva estructura. Y resulta que la inmunidad contra una cepa de virus no constituye una salvaguardia contra otra cepa. El virus de la gripe y del catarro común muestran particular propensión a pequeñas transformaciones, y ésta es una de las razones de que nos veamos atormentados por frecuentes recaídas de dichas enfermedades. En particular, la gripe desarrolla ocasionalmente una variación de extraordinaria virulencia, capaz de barrer a un mundo sorprendido y no inmunizado. Esto fue lo que ocurrió en 1918 y con resultados mucho menos fatales con la «gripe asiática» pandémica de 1957.
Un ejemplo aún más fastidioso de la extraordinaria eficiencia del organismo para formar anticuerpos es su tendencia a producirlos incluso contra proteínas indefensas que suelen introducirse en el cuerpo. Entonces, el organismo se vuelve «sensitivo» a esas mismas proteínas y puede llegar a reaccionar violentamente ante cualquier incursión ulterior de esas proteínas inocuas en su origen. La reacción puede adoptar la forma de picazón, lágrimas, mucosidades en la nariz y garganta, asma y así sucesivamente. «Reacciones alérgicas» semejantes pueden provocarlas el polen de ciertas plantas (como el de la fiebre del heno), determinados alimentos, el pelo o caspa de animales, y otras muchas cosas. La reacción alérgica puede llegar a ser lo suficientemente aguda para originar graves incapacidades o incluso la muerte. Por el descubrimiento de ese «shock anafiláctico», el fisiólogo francés Charles Robert Richet obtuvo el premio Nobel de Medicina y Fisiología, en 1913.
En cierto sentido, cada ser humano es más o menos alérgico a todos los demás seres humanos. Un trasplante o un injerto de un individuo a otro no prenderá porque el organismo del receptor considera como una proteína extraña el tejido trasplantado y fabrica contra él anticuerpos. El único injerto de una persona a otra capaz de resultar efectivo es entre dos gemelos idénticos. Como su herencia idéntica les proporciona exactamente las mismas proteínas, pueden intercambiar tejidos e incluso un órgano completo, como, por ejemplo, un riñón.
El primer trasplante de riñón efectuado con éxito tuvo lugar en Boston (en diciembre de 1954) entre dos hermanos gemelos. El receptor murió en 1962, a los treinta años de edad, por una coronariopatía. Desde entonces, centenares de individuos han vivido durante meses e incluso años con riñones trasplantados de otros, y no precisamente hermanos gemelos.
Se han hecho tentativas para trasplantar nuevos órganos, tales como pulmones o hígado, pero lo que verdaderamente captó el interés público fue el trasplante de corazón. Los primeros trasplantes de corazón fueron realizados, con moderado éxito, por el cirujano sudafricano Christiaan Barnard en diciembre de 1967. El afortunado receptor, Philip Blaiberg -un dentista jubilado de Sudáfrica-, vivió durante muchos meses con un corazón ajeno.
Después de aquel suceso, los trasplantes de corazón hicieron furor, pero este exagerado optimismo decayó considerablemente a fines de 1969. Pocos receptores disfrutaron de larga vida, pues el rechazo de los tejidos pareció plantear problemas gigantescos, pese a los múltiples intentos para vencer esa resistencia del organismo a aceptar tejidos extraños.
El bacteriólogo australiano Macfarlane Burnet opinó que se podría «inmunizar» el tejido embrionario con respecto a los tejidos extraños, y entonces el animal en libertad toleraría los injertos de esos tejidos. El biólogo británico Peter Medawar demostró la verosimilitud de tal concepto empleando embriones de ratón. Se recompensó a ambos por estos trabajos con el premio Nobel de Medicina y Fisiología de 1960.
En 1962, un inmunólogo franco-australiano, Jacques Francis-Albert-Pierre Miller, que trabajaba en Inglaterra, fue aún más lejos y descubrió el motivo de esa capacidad para laborar con embriones al objeto de permitir la tolerancia en el futuro. Es decir, descubrió que el timo (una glándula cuya utilidad había sido desconocida hasta entonces) era precisamente el tejido capaz de formar anticuerpos. Cuando se extirpaba el timo a un ratón recién nacido, el animal moría tres o cuatro meses después, debido a una incapacidad absoluta para protegerse contra el medio ambiente. Si se permitía que el ratón conservara el timo durante tres semanas, se observaba que ese plazo era suficiente para el desarrollo de células productoras de anticuerpos y entonces se podía extirpar la glándula sin riesgo alguno. Aquellos embriones en los que el timo no ha realizado todavía su labor, pueden recibir un tratamiento adecuado que les «enseñe» a tolerar los tejidos extraños. Tal vez sea posible algún día mejorar, mediante el timo, la tolerancia de los tejidos cuando se estime conveniente y quizás incluso en los adultos.
No obstante, aún cuando se supere el problema del rechazo, persistirán todavía otros problemas muy serios. Al fin y al cabo, cada persona que se beneficie de un órgano vivo deberá recibirlo de alguien dispuesto a donarlo, y entonces surge esta pregunta: ¿Cuándo es posible afirmar que el donante potencial está «suficientemente muerto» para ceder sus órganos? A este respecto quizá fuera preferible preparar órganos mecánicos que no implicaran el rechazo del tejido ni las espinosas disyuntivas éticas. Los riñones artificiales probaron su utilidad práctica por los años cuarenta, y hoy día los pacientes con insuficiencia en su funcionalismo renal natural pueden visitar el hospital una o dos veces por semana, para purificar su sangre. Es una vida de sacrificio para quienes tienen la suerte de recibir tal servicio, pero siempre es preferible a la muerte.
En la década de 1940, los investigadores descubrieron que las reacciones alérgicas son producidas por la liberación de pequeñas cantidades de una sustancia llamada «histamina» en el torrente sanguíneo. Esto condujo a la búsqueda, con éxito, de «antihistaminas» neutralizantes, capaces de aliviar los síntomas alérgicos, aunque sin curar, desde luego, la alergia. La primera antihistamina eficaz la obtuvo en 1937 en el Instituto Pasteur de París, un químico suizo, Daniel Bovet, quien, por ésta y ulteriores investigaciones en Quimioterapia, fue galardonado con el premio Nobel de Medicina y Fisiología en 1957.
Al observar que la secreción nasal y otros síntomas alérgicos eran muy semejantes a los del catarro común, algunos laboratorios farmacéuticos decidieron que lo que era eficaz para unos lo sería para el otro, y en 1949 y 1950 inundaron el mercado de tabletas antihistamínicas. (Resultó que dichas tabletas aliviaban poco o nada los resfriados, por lo que su popularidad disminuyó.) En 1937, gracias a las técnicas electroforéticas para aislar proteínas, los biólogos descubrieron, finalmente, el enclave físico de los anticuerpos en la sangre. Éstos se encontraban localizados en la fracción sanguínea denominada «gammaglobulina».
Hace tiempo que los médicos tenían conciencia de que algunos niños eran incapaces de formar anticuerpos, por lo cual resultaban presa fácil de la infección. En 1951, algunos médicos del Walter Reed Hospital de Washington realizaron un análisis electroforético del plasma de un niño de ocho años que sufría una septicemia grave («envenenamiento de la sangre») y, asombrados, descubrieron que en la sangre del paciente no había rastro alguno de gammaglobulina. Rápidamente fueron surgiendo otros casos. Los investigadores comprobaron que dicha carencia era debida a un defecto congénito en su metabolismo, que priva al individuo de la capacidad para formar gammaglobulina; a este defecto se le denominó «agammaglobulinemia». Estas personas son incapaces de desarrollar inmunidad frente a las bacterias. Sin embargo, ahora puede mantenérselas con vida gracias a los antibióticos. Pero lo que aún resulta más sorprendente es que sean capaces de hacerse inmunes a las infecciones víricas, como el sarampión y la varicela, una vez que han padecido dichas enfermedades. Al parecer, los anticuerpos no constituyen las únicas defensas del organismo contra los virus.
En 1957, un grupo de bacteriólogos británicos, a la cabeza del cual se encontraba Alick Isaacs, demostraron que las células, con el estímulo de una invasión de virus, liberaban una proteína de amplias propiedades antivíricas. No sólo combatía al virus origen de la infección presente, sino también a otros. Esta proteína, llamada interferón, se produce con mucha mayor rapidez que los anticuerpos y tal vez explique las defensas antivirus de quienes padecen la agammaglobulinemia. Aparentemente, su producción es estimulada por la presencia de ARN en la variedad hallada en los virus. El interferón parece dirigir la síntesis de un ARN mensajero que produce una proteína antivírica que inhibe la producción de proteína vírica, aunque no de otras formas de proteínas. El interferón parece ser tan potente como los antibióticos y no activa ninguna resistencia. Sin embargo, es específico de las especies. Sólo pueden aplicarse interferones de seres humanos, o de otros primates al organismo humano.
1   2   3   4   5

similar:

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconA principios del siglo XXI se da por sentado que el cerebro es la...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más icon1Microbiología La microbiología es la ciencia que trata de los seres...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más icon= cambiar era la de cualquier cambio heredable en el material hereditario...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconLos trastornos mentales del siglo XXI son cada vez más complicados...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconA la memoria de George McCready Price, el escritor anti-evolucionista...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconSi aceptamos que la diversidad es una propiedad de los seres vivos...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconLa patología inflamatoria de la piel es muy diversa, los pequeños...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconLos alimentos sean más nutritivos, introduciendo ciertas características...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconDe Wikipedia, la enciclopedia libre
«swine influenza viruses») han sido clasificadas en Influenzavirus c o en alguno de los subtipos del género Influenzavirus a (siendo...

Antes del siglo XVII, los seres vivientes más pequeños conocidos eran insectos diminutos. Naturalmente, se daba por sentado que no existía organismo alguno más iconLa ablación es una practica muy arraigada en los países del tercer...




Todos los derechos reservados. Copyright © 2019
contactos
b.se-todo.com