descargar 162.44 Kb.
|
TEMA 3. LA ATMÓSFERA.
Curiosidad (no estudiar): La atmósfera se puede definir como la envoltura de gases que rodea la Tierra. Se formó por la desgasificación que sufrió el planeta durante su proceso de enfriamiento desde las primeras etapas de su formación (al bajar la temperatura muchas sustancias que estaban gaseosas pasaron a líquido o sólido). A esto hay que añadir grandes cantidades de gases y polvo emitidos por los volcanes y los cambios a lo largo del tiempo por los seres vivos que aportaron O2 y N2 a la atmósfera y disminuyeron la concentración de CO2 y, como no, los cambios actuales provocados por la humanidad que aumentan el CO2 mediante la quema de combustibles fósiles y la deforestación. Como consecuencia de la compresibilidad de los gases y de la atracción gravitatoria terrestre, la mayor parte de la masa de la atmósfera se encuentra comprimida cerca de la superficie del planeta, de tal manera que en los primeros 15 Km se encuentra el 95% del total de su masa. Sin embargo, las proporciones de los diferentes gases, lo que coloquialmente se conoce como aire, se mantienen casi inalterables hasta los 80-100 Km. de altitud (homosfera), el resto tienen una composición más variable (heterosfera). El límite superior de la atmósfera se estima alrededor de los 10.000 Km de altura donde la concentración de gases es tan baja (prácticamente despreciable) que se asemeja a la del espacio exterior, aunque algunos autores ponen el límite en 30.000, otros 40.0000… Además de los gases, en la composición de la atmósfera también aparecen líquidos (agua líquida en las nubes) y sólidos como polen, esporas, polvo, microorganismos, sales, cenizas y agua sólida en las nubes formando minúsculos cristales de hielo. 1.2 Composición química de la atmósfera. 1.2.1 Componentes mayoritarios y minoritarios. Mayoritarios: son aquellos que están en mayor proporción en el aire: nitrógeno (N2), oxígeno (O2), argón (Ar), vapor de agua (H2O) y dióxido de carbono (CO2). Minoritarios: son todos los componentes restantes que aparecen en cantidades muy pequeñas, medidos en partes por millón. 1.2.2 Homosfera y Heterosfera. Hasta los primeros 80-100 Km la composición del aire es homogénea, manteniéndose las mismas proporciones en los gases (aunque lógicamente la concentración de gases decrece), llamándose a esta capa homosfera; a partir de esta altura la composición varía habiendo gases que predominan según una altura determinada, llamándose a esta capa heterosfera. Composición media del aire seco de la homosfera. -Nitrógeno (N2) 78,083% -Oxígeno (O2) 20,945% -Argón (Ar) 0,934% -Dióxido de carbono (CO2) 0,035% -Otros: Neón (Ne), Helio (He), Criptón (Kr), Hidrógeno (H2), Xenón (Xe), metano (CH4), Ozono (O3), óxidos de Nitrógeno (NOx), etc. 0,003% A esto habría que añadir el vapor de agua, que no se ha puesto porque varía mucho de unas zonas (4%) a otras (1%). Composición de la heterosfera. GAS PREDOMINANTE ALTITUD Capa de Nitrógeno molecular (N2) Entre 100 y 200 Km. Capa de Oxígeno atómico (O) Entre 200 y 1000 Km. Capa de Helio (He) Entre 1000 y 35000 Km. Capa de Hidrógeno atómico (H) A partir de 3500 Km. Fíjate como a mayor altura el gas predominante es más ligero (menor masa atómica) 1.3. Propiedades físicas de la atmósfera. 1.3.1. Presión atmosférica: concepto, unidad de medida e isobara. Es el peso ejercido por la masa de aire atmosférico sobre la superficie terrestre. Casi la totalidad de la masa de la atmósfera se encuentra en los primeros kilómetros por encima de la superficie terrestre (debido a la fuerza de atracción gravitatoria sobre los gases), por lo que la presión atmosférica disminuye rápidamente con la altura, por ejemplo en los primeros 5 Km de altura se encuentra el 50% de su masa y a los 15 km de altura se encuentra el 95% de su masa. El valor de esta presión se mide con el barómetro. A nivel del mar es 1 atmósfera o 1013 milibares, y es equivalente al peso de una columna de mercurio de 760 mm de altura y un cm2 de base. En los mapas meteorológicos, la presión atmosférica suele representarse mediante las isobaras, que son líneas que unen los puntos de igual presión. 1.3.2. Temperatura: variación de la temperatura en función de la altitud (se repetirá en la estructura de la atmósfera). El aire de la troposfera se calienta a partir del calor emitido por la superficie terrestre. La temperatura es máxima en la superficie terrestre, alrededor de 15 ºC de media, y a partir de ahí comienza a descender con la altura según un Gradiente Térmico Vertical (GTV) de 6,5 ºC de descenso cada Km que se asciende en altura (la temperatura baja 0,65 ºC cada 100m de altura) hasta llegar a -70 ºC a los 12 Km de altura. A partir de aquí, la temperatura asciende con la altura hasta llegar próximo a los 0 ºC en los 50 Km. Este incremento de temperatura está relacionado con la absorción por el ozono de la radiación solar ultravioleta. De los 50 a los 80 Km de altura, la temperatura disminuye hasta alcanzar los -140 ºC; a partir de aquí, la temperatura va ascendiendo en altura al absorber las radiaciones de alta energía, pudiendo alcanzar más de 1000 ºC a unos 600 Km de altura; a partir de aquí la baja densidad de gases impide la transmisión del calor y carece de sentido hablar de temperatura. Curiosidad: el calor es el paso de energía de un cuerpo que está a más temperatura a otro cuerpo que está a menor temperatura. 1.4 Estructura de la atmósfera. Las capas de la atmósfera y sus propiedades básicas. La atmósfera está dividida según las variaciones en la temperatura en una serie de capas superpuestas que de abajo a arriba son las siguientes:
![]() Más datos: la magnetosfera es la región del espacio que rodea la Tierra, en la que el campo magnético terrestre forma un escudo protector contra el viento solar (flujo de partículas, mayoritariamente protones emitidos desde la atmósfera solar) y las radiaciones mas peligrosas, como los rayos gamma y rayos X solares, lo que constituye una condición que posibilita la existencia de vida en nuestro planeta. La magnetosfera comienza a unos 500 Km. de altitud por encima de la ionosfera, y se prolonga mucho mas lejos que la exosfera, a unos 60.000 Km. de altitud en la dirección del Sol y mucho mas distante en dirección opuesta.
La Tierra tiene una temperatura media constante en el tiempo, por lo que existe un balance radiactivo nulo entre la cantidad de radiación solar entrante y la radiación terrestre saliente, si no se calentaría y enfriaría continuamente. De la radiación total proveniente del sol, un 30% es reflejada (albedo) por las nubes, superficie terrestre y atmósfera (gases, polvo,…), el 25 % es absorbida por la atmósfera debido a la capa de ozono (3%), vapor de agua y partículas del aire (17% ambos) y las nubes (5%) y un 45% es absorbida por la superficie (océanos > continentes), calor que saldrá de la superficie lenta y gradualmente hacia la atmósfera en forma de calor latente asociado a la evaporación > onda larga > conducción directa a la atmósfera. La radiación presente en la atmósfera (tanto la absorbida por ésta como la recibida de la superficie terrestre que acaba volviendo a la atmósfera) es devuelta al espacio en forma de radiación de onda larga (aunque el efecto invernadero o contrarradiación retarda la vuelta al espacio de la radiación).
La atmósfera presenta diferentes gradientes de temperatura en sus diferentes capas. Esto es debido a que absorbe de manera selectiva las radiaciones de diferentes longitudes de onda que nos llegan del Sol. En la ionosfera se absorben las radiaciones de onda corta y alta energía (rayos X, rayos gamma y parte de la radiación ultravioleta, todas ellas muy perjudiciales para la vida); y en la ozonosfera, gran parte de la radiación ultravioleta. Curiosidad: Al entrar en la troposfera ya se ha absorbido toda la radiación del espectro electromagnético menor de 290 micras de longitud de onda y la composición es 9% ultravioleta, 41% visible y 50% infrarroja. Las radiaciones correspondientes al espectro visible atraviesan la atmósfera y alcanzan la superficie terrestre, de donde se deduce que la atmósfera es casi transparente a dichas radiaciones y no experimenta un calentamiento apreciable al ser atravesada por las mismas. No ocurre así con las radiaciones infrarrojas y las de menor energía, que son absorbidas por el CO2 y el vapor de agua atmosféricos y que ocasionan un aumento de la temperatura.
La atmósfera por el día refleja (albedo) y absorbe parte de la radiación solar, evitando el sobrecalentamiento de la superficie del planeta. También absorbe parte de la radiación infrarroja que emite la superficie, evitando que se enfríe bruscamente por la noche ya que parte de ese calor vuelve a la Tierra como contrarradiación (efecto invernadero), y por último, la circulación del aire tiende a compensar los desequilibrios de temperatura originados por la diferente insolación en distintas zonas del planeta. Concretando:
3. Inversiones térmicas. Concepto y desarrollo CONCEPTO: En la troposfera la temperatura disminuye con la altura (GTV= ↓ 0,65 ºC/ 100m), en la parte más baja el aire es más cálido y por lo tanto, menos denso, por lo que tiende a ascender (y en la parte más alta el aire frío es más denso y tiende a descender por otro lugar donde no haya ascenso de aire cálido). Pero podemos encontrar zonas en la troposfera en las que (existen perturbaciones en el GTV) la temperatura aumenta con la altura, a este hecho se le llama inversión térmica que impide el ascenso del aire situado abajo (más frío y por tanto más denso). Las inversiones térmicas son muy negativas para los episodios de contaminación atmosférica porque el aire frío situado a menor altura pesa más y no puede ascender, impidiendo la dispersión de la contaminación atmosférica. Dicho de otra manera, si con la altura la temperatura va disminuyendo en suficiente proporción, los contaminantes ascenderán con el aire y según lo hagan se irán expandiendo, disminuyendo su concentración, hasta alcanzar la estratosfera, donde los vientos en altura los dispersarán totalmente. Por el contrario, hay dificultad para que se produzca la dispersión de los contaminantes cuando no hay corrientes ascendentes de aire. Una situación especialmente grave se da cuando hay inversión térmica (zona donde el aire asciende en altura en lugar de descender), ya que los contaminantes quedan atrapados cerca de la superficie. Sin vientos importantes, temperaturas bajo cero y una gran estabilidad atmosférica no hay dispersión ni dilución de contaminantes. ![]() ![]() ![]() DESARROLLO: Las inversiones térmicas se suelen producir en invierno, cuando las noches son más largas y la superficie terrestre se enfría mucho, provocando que el aire en contacto con la superficie se enfríe más rápidamente que el aire situado por encima. Este fenómeno se favorece en ausencia de nubes y de viento (piensa en que la ausencia de nubes durante la noche produce un rápido enfriamiento, pues las nubes actúan de pantalla, evitando que el calor almacenado durante el día escape rápidamente, POR ESO LOS AGRICULTORES MURCIANOS SABEN QUE EN INVIERNO LAS NOCHES SIN NUBES PUEDEN HELARSE SUS COSECHAS, PERO CON NUBES NO SE TIENEN QUE PREOCUPAR). Con anticiclones es más probable que se desarrollen situaciones de inversión térmica (los anticiclones producen ausencia de nubes). La situación se puede agravar si se forma niebla (nubes a ras del suelo), pues los contaminantes reaccionan con el agua de la niebla produciendo sustancias más dañinas como ácidos, el frío favorece la niebla pues a menor temperatura el vapor de agua se condensa formando gotas de agua en suspensión (niebla), la niebla reduce la visibilidad con lo que al amanecer tarda más el Sol en calentar la superficie para romper la inversión térmica. La inversión térmica se rompe cuando la radiación solar llega a la superficie terrestre con la suficiente intensidad y duración como para calentarla, calentándose también el aire próximo. De esta forma se establece el GTV normal y la posibilidad de que se produzca un ascenso del aire. Otras formas de desarrollarse una inversión térmica son también por el movimiento de una masa de aire desde una zona cálida a otra fría (el aire frío se sitúa abajo por ser mas denso y el aire cálido se sitúa a mayor altura por ser menos denso) o por el choque de dos masas de aire con humedad, presión y temperaturas diferentes (una masa polar y otra tropical). 4. CONTAMINACIÓN ATMOSFÉRICA: fuentes, principales contaminantes, detección, prevención y corrección.
Se entiende por contaminación atmosférica “la presencia en el aire de materias o formas de energía en concentraciones elevadas sobre su nivel ambiental normal como para que impliquen riesgo, daño o molestia grave para las personas y bienes de cualquier naturaleza (animales, plantas, materiales…)”. Las sustancias contaminantes pueden ser naturales o artificiales y presentarse sólidas, líquidas o gaseosas.
Natural: Comprenden las debidas a la actividad biológica de la biosfera, a la actividad geológica de la Tierra (erupciones volcánicas fundamentalmente) y a otros procesos naturales como impactos de meteoritos, incendios forestales de origen natural, etc. Antrópica: Son las que se originan como consecuencia de la actividad humana. Destaca especialmente la combustión de combustibles fósiles y sus derivados, bien en la industria o en el uso doméstico.
|