descargar 40.17 Kb.
|
Biología 2º Bachiller TEMA 15 Trascripción y Traducción
La mayoría de los genes son fragmentos de la molécula de ADN que determinan la síntesis de una proteína, otros realizan funciones reguladoras.
La estructura de los genes en eucariotas es compleja. La secuencia de nucleótidos que constituye un gen, y los propios genes entre sí, no se disponen linealmente en los cromosomas sino espaciados por fragmentos de ADN que no poseen información que pueda ser transcrita. En todo gen, además, distinguiremos las siguientes regiones: - La región promotora o promotor (P) - La región codificadora (C) - La región terminadora o terminador (T) ![]()
E ![]() Es por esto que la información contenida en la estructura primaria del ADN debe transcribirse a una molécula de ARN denominada ARN mensajero (ARNm). También se sintetizan en el núcleo el ARNr y el ARNt, necesarios para la síntesis proteica. Los procesos de síntesis de ARN a partir del ADN constituyen la transcripción de la información genética.
Destaquemos, en primer lugar, que para cada gen, sólo una de las cadenas, de las dos que posee el ADN, se transcribe. El mecanismo se realiza de la siguiente manera: ![]()
![]()
![]()
![]() Todo esto se ha producido en el núcleo celular. El ARNm maduro, que a partir de ahora será simplemente el ARNm o, también, el transcrito, pasará al hialoplasma donde su información servirá para la síntesis de una proteína concreta. Esto es, la información que se encuentra en forma de una cadena de nucleótidos se traducirá a una cadena de aminoácidos. http://vcell.ndsu.nodak.edu/animations/mrnasplicing/index.htm
http://vcell.ndsu.nodak.edu/animations/transcription/index.htm
El ARNm tiene una estructura primaria complementaria de una de las cadenas del ADN. Esta disposición de las bases nitrogenadas en el ARNm es la que codifica la secuencia de aminoácidos de la proteína. CRICK demostró que los aminoácidos en las proteínas van a estar codificados por secuencias de tres bases nitrogenadas consecutivas de las cadenas de ARNm, a partir de la secuencia de iniciación AUG, complementaria de la secuencia de iniciación TAC del ADN. Cada una de estas secuencias de tres bases se llaman tripletas o codones. Debe de tenerse en cuenta que, al haber en las proteínas 20 aminoácidos distintos, una o dos bases no serían suficientes para codificarlos. Al tener los ácidos nucleicos cuatro bases diferentes (la adenina, la guanina, la citosina y el uracilo), que representaremos por A, G, C y U respectivamente, existirán 64 codones o combinaciones de tres bases y como solamente hay 20 aminoácidos distintos, se deduce, que varias tripletas codificarán un mismo aminoácido. Este código, que relaciona la secuencia de bases del ARN con la secuencia de aminoácidos en las proteínas, recibe el nombre de código genético. ![]() ![]() http://www.ucm.es/info/genetica/grupod/Codigo/Codigo%20genetico.htm
* Mirar las que vienen en el libro pagina 252
http://www.ucm.es/info/genetica/grupod/Traduccion/traduccion.htm Consiste en la síntesis de una proteína a partir de la información contenida en el ARNm. Se trata de un proceso que se produce en el hialoplasma. Consta de las siguientes fases:
aa + GTP aa-GMP + PPi Los aminoácidos activados se unen a una molécula de ARNt (ARN de transferencia). Estos polinucleótidos poseen en su estructura una secuencia de tres bases, el anticodón, complementaria de los correspondientes codones o tripletas del ARNm. Cada aminoácido se une, por lo tanto, a un ARNt específico, que será aquel que lleve el anticodón correspondiente.
![]() ![]() http://vcell.ndsu.nodak.edu/animations/translation/index.htm
Todas las células de un organismo pluricelular, excepto los gametos, poseen la misma información genética. Ahora bien, no todos los genes se encuentran activos durante el ciclo celular. Muchos genes no actúan nunca y otros actúan sólo en determinados momentos, pudiendo permanecer durante largos periodos de tiempo inactivos. Para poder comprender el mecanismo de acción de los genes veamos a continuación estos dos modelos de regulación: http://www.ucm.es/info/genetica/grupod/Operon/Operon.htm
La ß-galactosidasa es una enzima que rompe el enlace O-glicosídico entre la galactosa y la glucosa en la lactosa. Si no hay lactosa en el medio, E. coli apenas dispone de unas pocas moléculas de enzima, una o dos solamente. Sin embargo, si añadimos lactosa al medio donde se encuentra la bacteria, al cabo de unos pocos minutos los niveles de ßgalactosidasa suben hasta alcanzar las 5000 moléculas por célula, aproximadamente. Aparecen además otras dos enzimas: una permeasa que facilita la absorción de la lactosa a través de la membrana plasmática de la célula y una transacetilasa, necesaria también para el metabolismo de la lactosa. Jacob y Monod interpretaron estos resultados planteando la hipótesis del operón. Según esta hipótesis la actividad de varios genes que codifican enzimas relacionadas entre sí, genes estructurales, sería desencadenada por la acción de un gen operador, contiguo a los genes estructurales en la molécula de ADN. El conjunto formado por los genes estructurales y el gen operador recibe el nombre de operón. Si el gen operador se encuentra libre, los genes estructurales se transcriben. A su vez, el gen operador estaría controlado por un gen regulador, que puede estar situado lejos del operón. Este gen va a sintetizar un ARNm que servirá para la síntesis de una proteína: el represor. Si el represor se encuentra activo se unirá al gen operador inhibiéndolo, con lo que los genes estructurales no se transcribirán. El operón LAC en E. coli constaría de tres genes estructurales que codificarían respectivamente: la ß-galactosidasa (gen z), la permeasa (gen y) y la transacetilasa (gen x). Si no hay lactosa en el medio, el gen regulador se traduciría en una proteína, el represor, con dos centros activos. Por uno de ellos sería capaz de unirse al gen operador inhibiendo la síntesis de los ARNm codificados por los genes estructurales z, y, x. Por el otro centro activo podría unirse a la lactosa cuando la hubiese. La lactosa cambiaría la estructura del represor inactivándolo e impidiendo que éste pudiese unirse al gen operador. De esta manera los genes estructurales se transcribirían produciéndose la síntesis de las tres enzimas que metabolizan la lactosa en E. coli. ![]() ![]()
Como es el caso de la regulación de los genes responsables de los procesos de síntesis. Supongamos que la célula necesita producir una determinada cantidad de una sustancia A y que no interesa que haya un exceso de A ni que ésta falte. Supongamos también que para sintetizar A se necesitan tres enzimas: a, b y c. En estos casos, la proteína que actúa como represor del gen operador se encuentra normalmente en estado inactivo, permitiendo que los genes a, b y c se transcriban y que A se sintetice. Cuando A alcanza unos niveles elevados, se une al represor, activándolo. El represor activo se une al operador y los genes estructurales a, b y c no se transcriben. Esto hace descender la cantidad de A, con lo que el represor vuelve a estar inactivo, los genes estructurales vuelven a traducirse y vuelve a sintetizarse A. De esta manera la célula mantiene unas determinadas cantidades de A. Como se ve, se trata de un mecanismo que funciona como un termostato, manteniendo unos niveles adecuados de una determinada sustancia, en este caso A, necesaria para la célula. ![]() ![]()
E ![]() La regulación génica en eucariotas es mucho más compleja, especialmente en organismos pluricelulares, con complicados programas de desarrollo. Un organismo multicelular usualmente inicia su desarrollo en forma de huevo fecundado, el cigoto. El cigoto se divide repetidamente produciendo muchas células que se diferencian y cada tipo celular comienza a producir proteínas característicamente diferentes que lo distinguen de otros tipos de células. A su vez, un mismo tipo celular puede producir variantes de las proteínas que sintetiza en distintas etapas del desarrollo del organismo. Sin embargo, toda la información genética originalmente presente en el cigoto también está presente en cada célula diploide del organismo. Resulta claro que la diferenciación de las células de un organismo multicelular depende de la inactivación de ciertos grupos de genes y de la activación de otros, es decir, de una regulación de la expresión. M ![]() Otro factor que está involucrado en la regulación génica es la metilación de la citosina, que ocurre después de la replicación. La metilación diferencial de ciertos genes en ambos sexos, que ocurre durante la gametogénesis (inprinting), desempeña un papel en el desarrollo temprano del embrión.
No todos los genes se expresan simultáneamente ni al mismo nivel.
Los objetivos de la regulación son:
Las bacterias responden muy eficientemente a cambios ambientales mediante la regulación de la expresión génica. En bacterias, los genes con una función relacionada suelen estar agrupados en operones, el cual es un grupo de genes que se transcriben en un mismo ARNm y que, por tanto, están sujetos a una regulación transcripcional común La iniciación de la transcripción en eucariotas requiere la participación de factores de transcripción basales que se unen al promotor, a distancias concretas del inicio. Además existen secuencias intensificadoras o silenciadoras que pueden actuar a gran distancia y en cualquier orientación. Estas controlan la estructura de la cromatina y la tasa de transcripción. Además existen otros factores de transcripción, la mayoría activadores. La actividad de los factores de transcripción se puede controlar en el momento de su síntesis, por modificación covalente, por unión a un ligando o por unión a un inhibidor. La respuesta a hormonas esteroideas está gobernada por elementos GRE. Estas hormonas se sintetizan en respuesta a un gran variedad de actividades neuroendocrinas y controlan crecimiento, desarrollo de tejidos y homeostasis corporal. Todas tienen un modo de acción similar: se unen a un receptor citoplásmico haciendo que este se una al ADN y active la transcripción. Ejemplo: la región reguladora del gen de la metalotioneína humana contiene elementos de respuesta en el promotor y en el potenciador Procesamiento alternativo: a partir de un mismo transcrito primario se pueden obtener varios ARNm maduros y, por tanto, varios productos proteicos, a veces específicos de tejido. Estabilidad del ARNm: las vidas medias de diferentes ARNm son muy variables (desde minutos hasta años). Las secuencias 5' y 3' no traducidas contienen información reguladora sobre la estabilidad y la localización del ARN ![]() Ejercicios paginas 260-261: 10, 11. 15, 16, 18, 20 Tema 15 Trascripción y Traducción |